GLOBAL BRANCHES OF POSITIVE WEAK SOLUTIONS OF SEMILINEAR ELLIPTIC PROBLEMS OVER NONSMOOTH DOMAINS

被引:5
|
作者
HEALEY, TJ
KIELHOFER, H
STUART, CA
机构
[1] CORNELL UNIV,CTR APPL MATH,ITHACA,NY 14853
[2] UNIV AUGSBURG,INST MATH,W-8900 AUGSBURG,GERMANY
[3] ECOLE POLYTECH FED LAUSANNE,DEPT MATH,CH-1015 LAUSANNE,SWITZERLAND
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500028535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear eigenvalue problem posed by a parameter-dependent semilinear second-order elliptic equation on a bounded domain with the Dirichlet boundary condition. The coefficients of the elliptic operator are bounded measurable functions and the boundary of the domain is only required to be regular in the sense of Wiener. The main results establish the existence of an unbounded branch of positive weak solutions.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 50 条