APPROXIMATIONS AND OPTIMAL GEOMETRIC DIVIDE-AND-CONQUER

被引:48
|
作者
MATOUSEK, J
机构
[1] Department of Applied Mathematics, Charles University, 11800 Praha 1
关键词
D O I
10.1006/jcss.1995.1018
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give an efficient deterministic algorithm for computing epsilon-approximations and epsilon-nets for range spaces of bounded VC-dimension. We assume that an n-point range space Sigma = (X,R) of VC-dimension d is given to us by an oracle, which given a subset A subset of or equal to X, returns a list of all distinct sets of the form A boolean AND R; R is an element of R (in time O(\A\(d+1))). Given a parameter r, the algorithm computes a (1/r)-approximation of size O(r(2) log r) for Sigma, in time O(n(r(2) log r)(d)). A (1/r)-net of size O(r log r) can be computed within the same time bound. We also obtain a new deterministic algorithm which for a given collection H of n hyperplanes in E(d) and a parameter r less than or equal to n computes a (1/r)-cutting of (asymptotically optimal) size O(r(d)). For r less than or equal to n(1-delta), where delta > 0 is arbitrary but fixed, the running time is O(nr(d-1)), which is optimal for geometric divide-and-conquer applications. (C) 1995 Academic Press, Inc.
引用
收藏
页码:203 / 208
页数:6
相关论文
共 50 条
  • [1] DIVIDE-AND-CONQUER
    JEFFRIES, T
    [J]. BYTE, 1993, 18 (03): : 187 - &
  • [2] DIVIDE-AND-CONQUER
    SAWYER, P
    [J]. CHEMICAL ENGINEER-LONDON, 1990, (484): : 36 - 38
  • [3] DIVIDE-AND-CONQUER
    GEORGHIOU, C
    [J]. FIBONACCI QUARTERLY, 1992, 30 (03): : 284 - 285
  • [4] DIVIDE-AND-CONQUER
    WRIGHT, DP
    SCOFIELD, CL
    [J]. BYTE, 1991, 16 (04): : 207 - 210
  • [5] DIVIDE-AND-CONQUER
    LEWIS, R
    [J]. CHEMISTRY IN BRITAIN, 1992, 28 (12) : 1092 - 1093
  • [6] Space-efficient geometric divide-and-conquer algorithms
    Bose, Prosenjit
    Maheshwari, Anil
    Morin, Pat
    Morrison, Jason
    Smid, Michiel
    Vahrenhold, Jan
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2007, 37 (03): : 209 - 227
  • [7] A divide-and-conquer approach to geometric sampling for active learning
    Cao, Xiaofeng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140
  • [8] The divide-and-conquer manifesto
    Dietterich, TG
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2000, 1968 : 13 - 26
  • [9] Divide-and-Conquer Fusion
    Chan, Ryan S. Y.
    Pollock, Murray
    Johansen, Adam M.
    Roberts, Gareth O.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [10] MULTIDIMENSIONAL DIVIDE-AND-CONQUER
    BENTLEY, JL
    [J]. COMMUNICATIONS OF THE ACM, 1980, 23 (04) : 214 - 229