WEIGHTS FOR TOTAL DIVISION ORDERINGS ON STRINGS

被引:5
|
作者
SCOTT, EA
机构
[1] UNIV ST ANDREWS,DIV COMPUTAT SCI,ST ANDREWS KY16 9ST,FIFE,SCOTLAND
[2] UNIV SURREY,DEPT MATH & COMP SCI,GUILDFORD GU2 5XH,SURREY,ENGLAND
关键词
D O I
10.1016/0304-3975(94)90111-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we consider total division orderings on strings. We give a simple proof of the fact that for each such ordering curly greater than there exists an essentially unique, nontrivial set of weights such that if the weight of u is greater than the weight of v then u curly greater than v. It is known that all total division orderings on strings are rational, we prove a slightly stronger version of this result. Also, we use the ideas involved in the proof of the weights result to give a much simpler proof of the rationality result.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 50 条
  • [1] A NOTE ON DIVISION ORDERINGS ON STRINGS
    MARTIN, U
    INFORMATION PROCESSING LETTERS, 1990, 36 (05) : 237 - 240
  • [2] On the diversity of orderings on strings
    Martin, U.
    Fundamenta Informaticae, 1995, 24 (1-2):
  • [3] RATIONALITY OF DIVISION ORDERINGS
    COHEN, DA
    SCOTT, EA
    INFORMATION PROCESSING LETTERS, 1992, 44 (06) : 307 - 311
  • [4] PARTIAL ORDERINGS FROM TOTAL ORDERINGS
    WARNER, S
    DAVIES, RO
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (10): : 1128 - &
  • [5] TOTAL ORDERINGS IN TOPOLOGY
    MEYER, PR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A610 - &
  • [6] Voting with rubber bands, weights, and strings
    Cervone, Davide P.
    Dai, Ronghua
    Gnoutcheff, Daniel
    Lanterman, Grant
    Mackenzie, Andrew
    Morse, Ari
    Srivastava, Nikhil
    Zwicker, William S.
    MATHEMATICAL SOCIAL SCIENCES, 2012, 64 (01) : 11 - 27
  • [7] The order types of termination orderings on monadic terms, strings and multisets
    Martin, U
    Scott, E
    JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (02) : 624 - 635
  • [8] UNIFORM STOCHASTIC ORDERINGS AND TOTAL POSITIVITY
    LYNCH, J
    MIMMACK, G
    PROSCHAN, F
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1987, 15 (01): : 63 - 69
  • [9] Strings of weights as chromosomes in genetic algorithms for combinatorial problems
    Julstrom, BA
    PROCEEDINGS OF THE THIRD NORDIC WORKSHOP ON GENETIC ALGORITHMS AND THEIR APPLICATIONS (3NWGA), 1997, : 33 - 48
  • [10] Integral representation with weights II, division and interpolation
    Mats Andersson
    Mathematische Zeitschrift, 2006, 254 : 315 - 332