ON NORMAL APPROXIMATION RATES FOR CERTAIN SUMS OF DEPENDENT RANDOM-VARIABLES

被引:36
|
作者
RINOTT, Y [1 ]
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH,LA JOLLA,CA 92093
基金
美国国家科学基金会;
关键词
STEINS METHOD; DEPENDENCY GRAPH; CENTRAL LIMIT THEOREM;
D O I
10.1016/0377-0427(94)90016-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X(1),...,X(n) be dependent random variables, and set lambda = E {Sigma(i=1)(n) X(i)}, and sigma(2) = Var{Sigma(i=1)(n) X(i)}. In most of the applications of Stein's method for normal approximations, the error rate \P((Sigma(i=1)(n) X(i) - lambda)/sigma less than or equal to w)- Phi(w)\ is of the order of sigma(-1/2). This rate was improved by Stein (1986) and others in some special cases. In this paper it is shown that for certain bounded random variables, a simple refinement of error-term calculations in Stein's method leads to improved rates.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 50 条