VECTOR DISSIMILARITY AND CLUSTERING

被引:1
|
作者
LEFKOVITCH, LP
机构
[1] Research Branch, Agriculture Canada, Research Program Service, Ottawa
关键词
D O I
10.1016/0025-5564(91)90028-H
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on the description of objects by m attributes, an m-element vector dissimilarity function is defined that, unlike scalar functions, retains the distinction among attributes. This function, which satisfies the conditions for a metric, allows the definition of betweenness, which can then be used for clustering. Applications to the subset-generation phase of conditional clustering and to nearest-neighbor-type algorithms are described.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 50 条
  • [1] Clustering in Ordered Dissimilarity Data
    Havens, Timothy C.
    Bezdek, James C.
    Keller, James M.
    Popescu, Mihail
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (05) : 504 - 528
  • [2] Dissimilarity Random Forest Clustering
    Bicego, Manuele
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 936 - 941
  • [3] PoClustering: Lossless Clustering of Dissimilarity Data
    Liu, Jinze
    Zhang, Qi
    Wang, Wei
    McMillan, Leonard
    Prins, Jan
    [J]. PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 557 - 562
  • [4] Hierarchical clustering for functional dissimilarity data
    Mizuta, M
    [J]. 7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING: I, 2003, : 223 - 227
  • [5] Evidential clustering of large dissimilarity data
    Denoeux, Thierry
    Sriboonchitta, Songsak
    Kanjanatarakul, Orakanya
    [J]. KNOWLEDGE-BASED SYSTEMS, 2016, 106 : 179 - 195
  • [6] Approximation techniques for clustering dissimilarity data
    Zhu, Xibin
    Gisbrecht, Andrej
    Schleif, Frank-Michael
    Hammer, Barbara
    [J]. NEUROCOMPUTING, 2012, 90 : 72 - 84
  • [7] Clustering Algorithm Based on Probabilistic Dissimilarity
    Yamashiro, Makito
    Endo, Yasunori
    Hamasuna, Yukihiro
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 429 - 433
  • [8] Properties of binary vector dissimilarity measures
    Zhang, B
    Srihari, SN
    [J]. PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 797 - 800
  • [9] Spectral clustering based on similarity and dissimilarity criterion
    Wang, Bangjun
    Zhang, Li
    Wu, Caili
    Li, Fan-zhang
    Zhang, Zhao
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (02) : 495 - 506
  • [10] Clustering under a hypothesis of smooth dissimilarity increments
    Fred, ALN
    Leitao, JMN
    [J]. 15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 190 - 194