A BRANCHING LAW FOR SPIN (7,C)-]G2 AND ITS APPLICATIONS TO UNIPOTENT REPRESENTATIONS

被引:13
|
作者
MCGOVERN, WM
机构
[1] Department of Mathematics, Yale University, New Haven
关键词
D O I
10.1016/0021-8693(90)90106-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a branching law which says how irreducible finite-dimensional Spin(7,C)-modules decompose over G2, using the Bott-Borel-Weil theorem. We then use this to calculate the K-types on each level of a certain filtered algebra which is also a U (Lie G2)-bimodule explicitly. © 1990.
引用
收藏
页码:166 / 175
页数:10
相关论文
共 50 条
  • [1] METRICS WITH HOLONOMY G2 OR SPIN (7)
    BRYANT, RL
    LECTURE NOTES IN PHYSICS, 1984, 1111 : 269 - 277
  • [2] Deformations of G2 and spin(7) structures
    Karigiannis, S
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (05): : 1012 - 1055
  • [3] The Chow rings of G2 and Spin(7)
    Guillot, Pierre
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 604 : 137 - 158
  • [4] BRANCHING RULE FOR RESTRICTION FROM SO(7) TO G2
    KING, RC
    QUBANCHI, AHA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (01): : 1 - 7
  • [5] Unipotent representations of G2 arising from the minimal representation of D4E
    Huang, JS
    Magaard, K
    Savin, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 500 : 65 - 81
  • [6] The branching rules for U(7) ⊃ O(7) ⊃ G2 ⊃ O(3)
    Ruan, D
    Sun, HZ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 33 (02) : 221 - 226
  • [7] Einstein Warped G2 and Spin(7) Manifolds
    Víctor Manero
    Luis Ugarte
    Communications in Mathematical Physics, 2019, 369 : 637 - 673
  • [8] Geometric structures on G2 and Spin(7)-manifolds
    Lee, Jae-Hyouk
    Leung, Naichung Conan
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (01) : 1 - 31
  • [9] Orientifolds and slumps in G2 and Spin(7) metrics
    Cvetic, M
    Gibbons, GW
    Lü, H
    Pope, CN
    ANNALS OF PHYSICS, 2004, 310 (02) : 265 - 301
  • [10] INVARIANTS OF G2 AND Spin(7) IN POSITIVE CHARACTERISTIC
    Zubkov A.N.
    Shestakov I.P.
    Transformation Groups, 2018, 23 (2) : 555 - 588