ON THE EXISTENCE OF RADIAL SOLUTIONS OF A NONLINEAR ELLIPTIC BVP IN AN ANNULUS

被引:7
|
作者
CHENG, Y
机构
[1] Department of Mathematics, Uppsala University, Uppsala, 75106
关键词
D O I
10.1002/mana.19941650106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the radial solutions of quasilinear elliptic BVP: (*) div(a(Absolute value of x, u, \delu\)delu) + f(Absolute value of x, u, \delu\) = 0, on A, u satisfies the Robin boundary conditions (2) below, where A = {x is-an-element-of R(n); a1 < Absolute value of x < a2}, a2 > a1 > 0, constants. Under the very general conditions, we prove that if f is superlinear at u = infinity, then (*) admits infinitely many radial solutions, and that each of them has a different (finite) number of zeros.
引用
收藏
页码:61 / 77
页数:17
相关论文
共 50 条