A GAUSS-LUCAS TYPE THEOREM ON THE LOCATION OF THE ROOTS OF A POLYNOMIAL

被引:0
|
作者
BUHMANN, MD [1 ]
RIVLIN, TJ [1 ]
机构
[1] IBM CORP,THOMAS J WATSON RES CTR,DEPT MATH SCI,YORKTOWN HTS,NY 10598
关键词
D O I
10.1016/0021-9045(91)90020-B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove a geometrical relationship between the zeros of a polynomial p of order m, say, and the zeros of another polynomial which is derived from p by multiplying each of p's coefficients, call them {αk}k = 0m, by a power of k or by k2 + 2kλ for λ > 0. © 1991.
引用
收藏
页码:235 / 238
页数:4
相关论文
共 50 条
  • [1] GAUSS-LUCAS TYPE THEOREM ON TRIGONOMETRIC POLYNOMIALS
    GENCHEV, TG
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1975, 28 (04): : 449 - 451
  • [2] A quantitative Gauss-Lucas theorem
    Totik, Vilmos
    ARKIV FOR MATEMATIK, 2022, 60 (01): : 195 - 212
  • [3] An extension of the theorem of Gauss-Lucas
    Gontcharoff, W
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1942, 36 : 39 - 41
  • [4] A generalization of the Gauss-Lucas theorem
    Diaz-Barrero, J. L.
    Egozcue, J. J.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (02) : 481 - 486
  • [5] A Converse of the Gauss-Lucas Theorem
    Nikolov, Nikolai
    Sendov, Blagovest
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (06): : 541 - 544
  • [6] A refinement of the Gauss-Lucas Theorem
    Dimitrov, DK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) : 2065 - 2070
  • [7] A generalization of the Gauss-Lucas theorem
    J. L. Díaz-Barrero
    J. J. Egozcue
    Czechoslovak Mathematical Journal, 2008, 58 : 481 - 486
  • [8] The quaternionic Gauss-Lucas theorem
    Ghiloni, R.
    Perotti, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1679 - 1686
  • [9] Sector Analogue of the Gauss-Lucas Theorem
    Sendov, Blagovest
    Sendov, Hristo
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (02): : 318 - 338
  • [10] The Gauss-Lucas theorem in an asymptotic sense
    Totik, Vilmos
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 848 - 854