Homogenization models for two-dimensional grid structures

被引:0
|
作者
Banks, HT
Cioranescu, D
Rebnord, DA
机构
[1] N CAROLINA STATE UNIV,CTR RES SCI COMPUTAT,RALEIGH,NC 27695
[2] UNIV PARIS 06,ANAL NUMER LAB,F-75252 PARIS 05,FRANCE
[3] SYRACUSE UNIV,DEPT MATH,SYRACUSE,NY 13224
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Love-Kirchhoff perforated plate or grid with Kelvin-Voigt damping is considered. The grid contains periodic rectangular holes. Detailed mathematical arguments for the derivation of an approximate homogenized model on a domain without perforations are given.
引用
收藏
页码:107 / 130
页数:24
相关论文
共 50 条
  • [1] Prominence fine structures in a magnetic equilibrium -: II.: A grid of two-dimensional models
    Heinzel, P
    Anzer, U
    Gunár, S
    ASTRONOMY & ASTROPHYSICS, 2005, 442 (01): : 331 - 343
  • [2] Homogenization of the two-dimensional Hall effect
    Briane, A.
    Manceau, D.
    Milton, G. W.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 1468 - 1484
  • [3] Composite material design of two-dimensional structures using the homogenization design method
    Fujii, D
    Chen, BC
    Kikuchi, N
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (09) : 2031 - 2051
  • [4] Two-Dimensional State Sum Models and Spin Structures
    Barrett, John W.
    Tavares, Sara O. G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (01) : 63 - 100
  • [5] NEW INTEGRABLE CANONICAL STRUCTURES IN TWO-DIMENSIONAL MODELS
    MAILLET, JM
    NUCLEAR PHYSICS B, 1986, 269 (01) : 54 - 76
  • [6] Two-Dimensional State Sum Models and Spin Structures
    John W. Barrett
    Sara O. G. Tavares
    Communications in Mathematical Physics, 2015, 336 : 63 - 100
  • [7] A Two-Dimensional Labile Aether Through Homogenization
    Briane, Marc
    Francfort, Gilles A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (02) : 599 - 628
  • [8] A Two-Dimensional Labile Aether Through Homogenization
    Marc Briane
    Gilles A. Francfort
    Communications in Mathematical Physics, 2019, 367 : 599 - 628
  • [9] Homogenization of the two-dimensional periodic Dirac operator
    Kukushkin A.A.
    Journal of Mathematical Sciences, 2013, 189 (3) : 490 - 507
  • [10] Complete vibration band gap characteristics of two-dimensional periodic grid structures
    Wang, Chuanlong
    Yao, Xiongliang
    Wu, Guoxun
    Tang, Li
    COMPOSITE STRUCTURES, 2021, 274