ON THE TYPICAL LEVEL-CROSSING TIME AND PATH

被引:5
|
作者
NYRHINEN, H
机构
[1] Pohjola Insurance Company Ltd., Lapinmäentie 1
关键词
LEVEL CROSSING; LARGE DEVIATIONS THEORY; LAW OF LARGE NUMBERS;
D O I
10.1016/0304-4149(94)00079-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Y-1, Y-2,... be a stochastic process and M a positive real number. Define the level crossing time T-M = inf{n\Y-n > M} (T-M = + infinity, if Y-n less than or equal to M for n = 1, 2,...). We study the process with the condition that the high level M is crossed. Using the techniques of large deviations theory we describe roughly when and how the level crossing typically occurs. The main hypotheses required are stated in terms of the generating functions associated with the process (Y-n).
引用
收藏
页码:121 / 137
页数:17
相关论文
共 50 条
  • [1] SPHALERON AND LEVEL-CROSSING
    RINGWALD, A
    PHYSICS LETTERS B, 1988, 213 (01) : 61 - 63
  • [2] Locking the Wiener Process to its Level-Crossing Time
    Schwarz, Wolf
    Miller, Jeff O.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (02) : 372 - 381
  • [3] LEVEL SELECTION FOR A LEVEL-CROSSING RECEIVER
    BOATRIGHT, PA
    RITER, S
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1973, CO21 (08) : 953 - 954
  • [4] Opportunistic sampling by level-crossing
    Guan, Karen M.
    Singer, Andrew C.
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1513 - +
  • [5] LEVEL-CROSSING CURVATURE AND THE LAPLACIAN
    GUO, L
    IMAGE AND VISION COMPUTING, 1988, 6 (03) : 185 - 188
  • [6] LEVEL-CROSSING FOR HOT SPHALERONS
    AMBJORN, J
    FARAKOS, K
    HANDS, S
    KOUTSOUMBAS, G
    THORLEIFSSON, G
    NUCLEAR PHYSICS B, 1994, 425 (1-2) : 39 - 66
  • [7] NEW LEVEL-CROSSING COUNTER
    LEE, WCY
    REUDINK, DO
    YEH, YS
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1975, IM24 (01) : 79 - 81
  • [8] Nonlinear level-crossing models
    Vitanov, NV
    Suominen, KA
    PHYSICAL REVIEW A, 1999, 59 (06): : 4580 - 4588
  • [9] PARABOLIC LEVEL-CROSSING MODELS
    SUOMINEN, KA
    OPTICS COMMUNICATIONS, 1992, 93 (1-2) : 126 - 134
  • [10] LEVEL-CROSSING IN A DISSIPATIVE ENVIRONMENT
    PING, A
    RAMMER, J
    PHYSICA B, 1990, 165 : 953 - 954