Multiple target tracking using particle filtering and multiple model for manoeuvring targets

被引:1
|
作者
Messaoudi, Zahir [1 ,2 ]
Oussalah, Mourad [1 ]
机构
[1] Univ Birmingham, Sch Elect Elect & Syst Engn, Edgbaston, Birmingham B15 2TT, W Midlands, England
[2] Mil Polytech Sch Algiers, Bordj El Bahri, Algeria
关键词
data fusion; multiple manoeuvring targets tracking; particle filter; JPDA; MMPF;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of data fusion for joint multiple manoeuvring target tracking and classification where centralised versus decentralised architectures are contrasted. The proposal advocates the use of a hybrid approach combining a particle filter (PF) like method to deal with system nonlinearities, Fitzgerald's cheap joint probabilistic data association filter (CJPDAF) for the purpose of data association/target estimation problems and multiple model filter (MMF) to handle the issue of target manoeuvrability, yielding CJPDA-MMPF algorithm. The feasibility and the performances of the proposal have been demonstrated using complex scenarios involving a set of Monte Carlo simulations dealing with four crossing targets with different operations modes. Constant velocity model and constant turn rate model were employed to generate the manoeuvres. The results of the simulations demonstrate the feasibility and the superiority of the centralised fusion architecture approach when combined with multiple model particle filter and cheap joint data association filter.
引用
收藏
页码:303 / 332
页数:30
相关论文
共 50 条
  • [1] An improved multiple model particle filtering approach for manoeuvring target tracking using airborne GMTI with geographic information
    Yu, Miao
    Oh, Hyondong
    Chen, Wen-Hua
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 52 : 62 - 69
  • [2] Target tracking using multiple auxiliary particle filtering
    Ubeda-Medina, Luis
    Garcia-Fernandez, Angel F.
    Grajal, Jesus
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 9 - 16
  • [3] Target tracking by multiple particle filtering
    Bugallo, Monica F.
    Lu, Ting
    Djuric, Petar M.
    [J]. 2007 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2007, : 1882 - 1888
  • [4] Automated model selection based tracking of multiple targets using particle filtering
    Zaveri, MA
    Desai, UB
    Merchant, SN
    [J]. IEEE TENCON 2003: CONFERENCE ON CONVERGENT TECHNOLOGIES FOR THE ASIA-PACIFIC REGION, VOLS 1-4, 2003, : 831 - 835
  • [5] Multiple Model Rao-Blackwellized Particle Filter for Manoeuvring Target Tracking
    Li Liang-qun
    Me Wei-xin
    Huang Jing-xiong
    Huang Jian-jun
    [J]. DEFENCE SCIENCE JOURNAL, 2009, 59 (03) : 197 - 204
  • [6] Combining the interacting multiple model method with particle filters for manoeuvring target tracking
    Foo, P. H.
    Ng, G. W.
    [J]. IET RADAR SONAR AND NAVIGATION, 2011, 5 (03): : 234 - 255
  • [7] A fuzzy multiple model approach to manoeuvring target tracking
    McGinnity, S
    Irwin, G
    [J]. ALGORITHMS AND ARCHITECTURES FOR REAL-TIME CONTROL 1997, 1997, : 257 - 262
  • [8] Fuzzy multiple model tracking algorithm for manoeuvring target
    Zuo, DG
    Han, CZ
    Zheng, L
    Zhu, HY
    Han, H
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL II, 2002, : 818 - 823
  • [9] Target Visibility for Multiple Manoeuvring Target Tracking
    Sabordo, Madeleine G.
    Aboutanios, Elias
    [J]. SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXIV, 2015, 9474
  • [10] Intuitionistic Fuzzy Multiple Model Tracking Algorithm for Tracking Manoeuvring Target
    Zhao, Renhou
    Zhou, Xiaoguang
    Zhang, Lili
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 161 - 164