DIVERGENCE OF NEARBY TRAJECTORIES FOR THE GRAVITATIONAL N-BODY PROBLEM

被引:29
|
作者
KANDRUP, HE [1 ]
机构
[1] OAKLAND UNIV,DEPT PHYS,ROCHESTER,MI 48063
来源
ASTROPHYSICAL JOURNAL | 1990年 / 364卷 / 02期
关键词
Galaxies: clustering; Numerical methods;
D O I
10.1086/169425
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper considers the Hamiltonian flow of a collection of N self-gravitating Newtonian point masses, viewed as a geodesic flow on an appropriate curved but conformally flat 3N-dimensional manifold. It is proved that, with respect to the natural Euclidean measure, the probability that a random perturbation δqa of a random geodesic ua with comparable kinetic and potential energies will feel a positive curvature K(u, δq) decreases exponentially to zero as N → ∞. This suggests, but unfortunately does not prove, that at least for short times, large self-gravitating systems should exhibit a "mixing-type" or "chaotic" behavior.
引用
收藏
页码:420 / 425
页数:6
相关论文
共 50 条
  • [1] Orbital Divergence and Relaxation in the Gravitational N-Body Problem
    P. Hut
    D. C. Heggie
    [J]. Journal of Statistical Physics, 2002, 109 : 1017 - 1025
  • [2] Orbital divergence and relaxation in the gravitational N-body problem
    Hut, P
    Heggie, DC
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (5-6) : 1017 - 1025
  • [3] Computer simulations, exact trajectories, and the gravitational N-body problem
    Hayes, W
    [J]. AMERICAN JOURNAL OF PHYSICS, 2004, 72 (09) : 1251 - 1257
  • [4] The solution of the gravitational n-body problem
    Escultura, EE
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 5021 - 5032
  • [5] Evolving Trajectories of the N-body Problem
    Tsang, Jeffrey
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3726 - 3733
  • [6] Conjugate points in the gravitational n-body problem
    Mingarelli, AB
    Mingarelli, CMF
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 91 (3-4): : 391 - 401
  • [7] Conjugate Points in the Gravitational n-Body Problem
    Angelo B. Mingarelli
    Chiara M. F. Mingarelli
    [J]. Celestial Mechanics and Dynamical Astronomy, 2005, 91 : 391 - 401
  • [8] Variational integrators for the gravitational N-body problem
    Farr, Will M.
    Bertschinger, Edmund
    [J]. ASTROPHYSICAL JOURNAL, 2007, 663 (02): : 1420 - 1433
  • [9] Initial data for the relativistic gravitational N-body problem
    Chrusciel, Piotr T.
    Corvino, Justin
    Isenberg, James
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (22)
  • [10] STOCHASTIC-PROCESSES AND THE GRAVITATIONAL N-BODY PROBLEM
    KANDRUP, HE
    MAHON, ME
    [J]. STOCHASTIC PROCESSES IN ASTROPHYSICS, 1993, 706 : 81 - 99