Schur's Theorem on the Stability of Networks

被引:4
|
作者
Schwarzweller, Christoph [1 ]
Rowinska-Schwarzweller, Agnieszka [2 ]
机构
[1] Univ Gdansk, Inst Comp Sci, Wita Stwosza 57, PL-80952 Gdansk, Poland
[2] Univ Stuttgart, Chair Display Technol, D-70569 Stuttgart, Germany
来源
FORMALIZED MATHEMATICS | 2006年 / 14卷 / 04期
关键词
D O I
10.2478/v10037-006-0017-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complex polynomial is called a Hurwitz polynomial if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical networks. In this article we prove Schur's criterion [17] that allows to decide whether a polynomial p(x) is Hurwitz without explicitly computing its roots: Schur's recursive algorithm successively constructs polynomials p(i)(x) of lesser degree by division with x - c, R{c} < 0, such that p(i)(x) is Hurwitz if and only if p(x) is.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 50 条
  • [1] STABILITY PROBLEMS IN A THEOREM OF SCHUR,F
    NIKOLAEV, IG
    COMMENTARII MATHEMATICI HELVETICI, 1995, 70 (02) : 210 - 234
  • [2] The converse of Schur's theorem
    Niroomand, Peyman
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 401 - 403
  • [3] Polynomial Schur's Theorem
    Liu, Hong
    Pach, Peter Pal
    Sandor, Csaba
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1357 - 1384
  • [4] The converse of Schur’s theorem
    Peyman Niroomand
    Archiv der Mathematik, 2010, 94 : 401 - 403
  • [5] Polynomial Schur’s Theorem
    Hong Liu
    Péter Pál Pach
    Csaba Sándor
    Combinatorica, 2022, 42 : 1357 - 1384
  • [6] ROBUST SCHUR POLYNOMIAL STABILITY AND KHARITONOV THEOREM
    KRAUS, F
    ANDERSON, BDO
    MANSOUR, M
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 47 (05) : 1213 - 1225
  • [7] Schur's theorem and Wiegold's bound
    Wehrfritz, B. A. F.
    JOURNAL OF ALGEBRA, 2018, 504 : 440 - 444
  • [8] A reversal of Schur’s partition theorem
    Mircea Merca
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [9] A reversal of Schur's partition theorem
    Merca, Mircea
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [10] A generalization of a converse to Schur's theorem
    Sury, B.
    ARCHIV DER MATHEMATIK, 2010, 95 (04) : 317 - 318