Accelerating R with high performance linear algebra libraries

被引:0
|
作者
Oancea, Bogdan [1 ,2 ]
Andrei, Tudorel [2 ,3 ]
Dragoescu, Raluca Mariana [3 ]
机构
[1] Nicolae Titulescu Univ Bucharest, Bucharest, Romania
[2] Natl Stat Inst Romania, Bucharest, Romania
[3] Bucharest Univ Econ Studies, Bucharest, Romania
关键词
linear algebra; BLAS; high performance computing;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Linear algebra routines are basic building blocks for the statistical software. In this paper we analyzed how can we improve R performance for matrix computations. We benchmarked few matrix operations using the standard linear algebra libraries included in the R distribution and high performance libraries like OpenBLAS, GotoBLAS and MKL. Our tests showed the best results are obtained with the MKL library, the other two libraries having similar performances, but lower than MKL.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 50 条
  • [1] RcppArmadillo: Accelerating R with high-performance C plus plus linear algebra
    Eddelbuettel, Dirk
    Sanderson, Conrad
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 1054 - 1063
  • [2] Formal methods for high-performance linear algebra libraries
    Gunnels, John A.
    van de Geijn, Robert A.
    IFIP Advances in Information and Communication Technology, 2001, 60 : 193 - 208
  • [3] Rapid development of high-performance linear algebra libraries
    Bientinesi, Paolo
    Gunnels, John A.
    Gustavson, Fred G.
    Henry, Greg M.
    Myers, Margaret
    Quintana-Orti, Enrique S.
    van de Geijn, Robert A.
    APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2006, 3732 : 376 - 384
  • [4] Formal methods for high-performance linear algebra libraries
    Gunnels, JA
    van de Geijn, RA
    ARCHITECTURE OF SCIENTIFIC SOFTWARE, 2001, 60 : 193 - 210
  • [5] SOFTWARE LIBRARIES FOR LINEAR ALGEBRA COMPUTATIONS ON HIGH-PERFORMANCE COMPUTERS
    DONGARRA, JJ
    WALKER, DW
    SIAM REVIEW, 1995, 37 (02) : 151 - 180
  • [6] Performance estimation of linear algebra numerical libraries
    De Rosis, Alessandro
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (01) : 13 - 19
  • [7] Multilevel Approaches to Fine Tune Performance of Linear Algebra Libraries
    Gheibi, Sanaz
    Banerjee, Tania
    Ranka, Sanjay
    Sahni, Sartaj
    2019 IEEE 19TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2019), 2019,
  • [8] GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations
    Carvalho Maia, Julio Daniel
    Urquiza Carvalho, Gabriel Aires
    Mangueira, Carlos Peixoto, Jr.
    Santana, Sidney Ramos
    Formiga Cabral, Lucidio Anjos
    Rocha, Gerd B.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3072 - 3081
  • [9] Future linear-algebra libraries
    Dongarra, J
    IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1996, 3 (02): : 38 - 40
  • [10] Deriving dense linear algebra libraries
    Bientinesi, Paolo
    Gunnels, John A.
    Myers, Margaret E.
    Quintana-Orti, Enrique S.
    Rhodes, Tyler
    van de Geijn, Robert A.
    Van Zee, Field G.
    FORMAL ASPECTS OF COMPUTING, 2013, 25 (06) : 933 - 945