Monitoring the Intraday Volatility Pattern

被引:11
|
作者
Gabrys, Robertas [2 ]
Hormann, Siegfried [1 ]
Kokoszka, Piotr [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 210 Bd Triomphe, B-1050 Brussels, Belgium
[2] Univ Southern Calif, Marshall Sch Business, Dept Informat & Operat Management, Los Angeles, CA USA
[3] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
关键词
change point detection; intraday volatility; functional data analysis; sequential analysis;
D O I
10.1515/jtse-2012-0006
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
A functional time series consists of curves, typically one curve per day. The most important parameter of such a series is the mean curve. We propose two methods of detecting a change in the mean function of a functional time series. The change is detected on line, as new functional observations arrive. The general methodology is motivated by, and applied to, the detection of a change in the mean intraday volatility pattern. The methodology is asymptotically justified by applying a new notion of weak dependence for functional time series. It is calibrated and validated by simulations based on real intraday volatility curves.
引用
收藏
页码:87 / 116
页数:30
相关论文
共 50 条
  • [1] The influence of intraday seasonality on volatility transmission pattern
    Alemany, N.
    Arago, V.
    Salvador, E.
    [J]. QUANTITATIVE FINANCE, 2019, 19 (07) : 1179 - 1197
  • [2] Detection of a structural break in intraday volatility pattern
    Kokoszka, Piotr
    Kutta, Tim
    Mohammadi, Neda
    Wang, Haonan
    Wang, Shixuan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 176
  • [3] A slightly depressing jump model: intraday volatility pattern simulation
    Khashanah, Khaldoun
    Chen, Jing
    Hawkes, Alan
    [J]. QUANTITATIVE FINANCE, 2018, 18 (02) : 213 - 224
  • [4] Intraday Seasonality and Volatility Pattern: An Explanation with Recurrence Quantification Analysis
    Unal, Baki
    Kucukkocaoglu, Guray
    Kadioglu, Eyup
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (03):
  • [5] Is the diurnal pattern sufficient to explain intraday variation in volatility? A nonparametric assessment
    Christensen, Kim
    Hounyo, Ulrich
    Podolskij, Mark
    [J]. JOURNAL OF ECONOMETRICS, 2018, 205 (02) : 336 - 362
  • [6] Intraday volatility forecasting from implied volatility
    Byun, Suk Joon
    Rhee, Dong Woo
    Kim, Sol
    [J]. INTERNATIONAL JOURNAL OF MANAGERIAL FINANCE, 2011, 7 (01) : 83 - +
  • [7] Intraday Volatility on the NYSE and NASDAQ
    Weaver, Daniel G.
    [J]. ADVANCES IN QUANTITATIVE ANALYSIS OF FINANCE AND ACCOUNTING, VOL 3: ESSAYS IN MICROSTRUCTURE IN HONOR OF DAVID K. WHITCOMB, 2006, 3 : 111 - 138
  • [8] Intraday Periodic Volatility Curves
    Andersen, Torben G.
    Su, Tao
    Todorov, Viktor
    Zhang, Zhiyuan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1181 - 1191
  • [9] PROGRAM TRADING AND INTRADAY VOLATILITY
    HARRIS, L
    SOFIANOS, G
    SHAPIRO, JE
    [J]. REVIEW OF FINANCIAL STUDIES, 1994, 7 (04): : 653 - 685
  • [10] Cryptocurrency Volatility Forecasting Using Commonality in Intraday Volatility
    Djanga, Emmanuel
    Zhang, Chao
    Cucuringu, Mihai
    [J]. SSRN, 2023,