ON CHI-MUB-LATTICES AND CONVEX SUBSTRUCTURES OF LATTICES AND SEMILATTICES

被引:0
|
作者
NIEMINEN, J
机构
关键词
D O I
10.1007/BF01950275
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:229 / 236
页数:8
相关论文
共 50 条
  • [1] CONGRUENCE LATTICES OF SEMILATTICES
    FREESE, R
    NATION, JB
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1973, 49 (01) : 51 - 58
  • [2] Congruence lattices of pseudocomplemented semilattices
    Katrinak, T
    [J]. SEMIGROUP FORUM, 1997, 55 (01) : 1 - 23
  • [3] CONGRUENCE LATTICES OF PSEUDOCOMPLEMENTED SEMILATTICES
    SANKAPPA.HP
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A479 - A480
  • [4] Congruence Lattices of Semilattices with Operators
    Jennifer Hyndman
    J. B. Nation
    Joy Nishida
    [J]. Studia Logica, 2016, 104 : 305 - 316
  • [5] Congruence Lattices of Pseudocomplemented Semilattices
    Tibor Katriňák
    [J]. Semigroup Forum, 1997, 55 : 1 - 23
  • [6] On Centralizers of Finite Lattices and Semilattices
    Toth, Endre
    Waldhauser, Tamas
    [J]. JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2021, 36 (4-5) : 405 - 436
  • [7] GLOBALLY DETERMINED LATTICES AND SEMILATTICES
    GOULD, M
    ISKRA, JA
    TSINAKIS, C
    [J]. ALGEBRA UNIVERSALIS, 1984, 19 (02) : 137 - 141
  • [8] On centralizers of finite lattices and semilattices
    Tóth, Endre
    Waldhauser, Tamás
    [J]. Journal of Multiple-Valued Logic and Soft Computing, 2021, 36 (04): : 405 - 436
  • [9] A Categorical Duality for Semilattices and Lattices
    Sergio A. Celani
    Luciano J. González
    [J]. Applied Categorical Structures, 2020, 28 : 853 - 875
  • [10] A Categorical Duality for Semilattices and Lattices
    Celani, Sergio A.
    Gonzalez, Luciano J.
    [J]. APPLIED CATEGORICAL STRUCTURES, 2020, 28 (05) : 853 - 875