THE NUMBER OF DISTINCT PART SIZES IN A RANDOM INTEGER PARTITION

被引:23
|
作者
GOH, WMY
SCHMUTZ, E
机构
[1] M.C.S. Department, Drexel University, Philadelphia
基金
美国国家科学基金会;
关键词
D O I
10.1016/0097-3165(95)90111-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a central limit theorem for the number of different part sizes in a random integer partition. If lambda is one of the P(n) partitions of the integer n, let D-n(lambda) be the number of distinct part sizes that lambda has. (Each part size counts once, even though there may be many parts of a given size.) For any fixed x, #{lambda: D-n(lambda) less than or equal to A(n) + B-n}/P(n) --> 1/root 2 pi integral(-infinity) (x) e(-t2/2)dt as n --> infinity, where A(n) = root 6/pi)n(1/2) and B-n = (root 6/2 pi - root 54/pi(3))(1/2)n(1/4). (C) 1995 Academic Press, Inc.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条