Secure Cryptographic Scheme based on Modified Reed Muller Codes

被引:0
|
作者
Gueye, Cheikh Thiecoumba [1 ,2 ]
Mboup, E. L. Hadji Modou [1 ,2 ]
机构
[1] Univ Cheikh Anta DIOP, Dept Mathemat & Informat, Dakar, Senegal
[2] Laboratoire LACGAA, Dakar, Senegal
关键词
McEliece cryptosystem; Minder and Shokrolahi attack; Reed Muller code;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is devised a new cryptosystem based on modified Reed Muller codes RM(r, m). The new cryptosystem is a modified version of Sidel'nikov's one. This allows to increase the security of the public key, and to reconsider Reed Muller codes as good candidates for using in secure encryption scheme. An efficient decoding with the Reed Muller decoding algorithm RM(r, m) and an increased level of security against attacks of the Sidel'nikov's crypto-system due to Minder and Shokrolahi are the main advantages of the modified version. Adding new columns implies longer codes, but this would not be a problem for decoding or deciphering because in decode one has only to deal with the words of the secret code belonging to the Reed Muller code RM(r, m). So the decoding phase would not suffer from this modification.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 50 条
  • [1] Novel FEC Coding Scheme for Dimmable Visible Light Communication Based on the Modified Reed-Muller Codes
    Kim, Sunghwan
    Jung, Sung-Yoon
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (20) : 1514 - 1516
  • [2] A NEW STEGANOGRAPHIC SCHEME BASED ON FIRST ORDER REED MULLER CODES A New Steganographic Scheme
    Jouhari, Houda
    Souidi, El Mamoun
    [J]. SECRYPT 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, 2011, : 351 - 356
  • [3] Reed-Muller Codes
    Abbe, Emmanuel
    Sberlo, Ori
    Shpilka, Amir
    Ye, Min
    [J]. FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2023, 20 (1-2): : 1 - 156
  • [4] ON THE REED-MULLER CODES
    ASSMUS, EF
    [J]. DISCRETE MATHEMATICS, 1992, 106 : 25 - 33
  • [5] Key Predistribution Scheme Using Finite Fields and Reed Muller Codes
    Sarkar, Pinaki
    Chowdhury, Morshed U.
    [J]. SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING 2011, 2011, 368 : 67 - +
  • [6] BINARY MULTILEVEL COSET CODES BASED ON REED-MULLER CODES
    PELLIZZONI, R
    SPALVIERI, A
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1994, 42 (07) : 2357 - 2360
  • [7] Basic Reed–Muller Codes as Group Codes
    Tumaykin I.N.
    [J]. Journal of Mathematical Sciences, 2015, 206 (6) : 699 - 710
  • [8] Cryptographic hardness based on the decoding of Reed-Solomon codes
    Kiayias, A
    Yung, M
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, 2002, 2380 : 232 - 243
  • [9] Cryptographic hardness based on the decoding of Reed-Solomon codes
    Kiayias, Aggelos
    Yung, Moti
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (06) : 2752 - 2769
  • [10] Ideal representation of Reed–Solomon and Reed–Muller codes
    E. Couselo
    S. González
    V. T. Markov
    C. Martínez
    A. A. Nechaev
    [J]. Algebra and Logic, 2012, 51 : 195 - 212