CUMULANT SERIES EXPANSION OF HYBRID NONLINEAR MOMENTS OF N-VARIATES

被引:16
|
作者
SCARANO, G
CAGGIATI, D
JACOVITTI, G
机构
[1] CNR, IST ACUST OM CORBINO, I-00189 ROME, ITALY
[2] UNIV ROME LA SAPIENZA, DEPT INFOCOM, I-00184 ROME, ITALY
关键词
D O I
10.1109/TSP.1993.193184
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this correspondence, the extension to functions or several variables of a theorem for nonlinear transformations of random variables, recently appearing in [1], is presented. It is shown that, under general conditions, the n-fold moment between a random variable X1 and a nonlinearity of other n - 1 variables (X2, ..., X(n)) can be represented by a series of higher order cumulants. The coefficients of this cumulant expansion are the expected values of the partial derivatives of the function describing the nonlinearity. The worthwhile case of fourfold moments involving nonlinearities of Gaussian variates is directly derived by retaining those terms of the expansion corresponding to first- and second-order nonzero cumulants.
引用
收藏
页码:486 / 488
页数:3
相关论文
共 50 条
  • [1] CUMULANT SERIES EXPANSION OF HYBRID NONLINEAR MOMENTS OF COMPLEX RANDOM-VARIABLES
    SCARANO, G
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (04) : 1001 - 1003
  • [2] Precision thrust cumulant moments at N3LL
    Abbate, Riccardo
    Fickinger, Michael
    Hoang, Andre H.
    Mateu, Vicent
    Stewart, Iain W.
    [J]. PHYSICAL REVIEW D, 2012, 86 (09):
  • [4] Expansion for the moments of a nonlinear stochastic model
    Drozdov, AN
    Morillo, M
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (16) : 3280 - 3283
  • [5] NONLINEAR FILTERS APPROXIMATIONS BY CUMULANT FUNCTION EXPANSION - THE POLYNOMIAL CASE
    HUILLET, T
    RIGAL, G
    [J]. APPLIED MATHEMATICAL MODELLING, 1991, 15 (02) : 58 - 72
  • [6] Nonlinear response in the cumulant expansion for core-level photoemission
    Tzavala, Marilena
    Kas, J. J.
    Reining, Lucia
    Rehr, J. J.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [7] Hybrid method of moments with interpolation closure-Taylor-series expansion method of moments scheme for solving the Smoluchowski coagulation equation
    Yu, Mingzhou
    Lin, Jianzhong
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 52 : 94 - 106
  • [8] Series expansion feasibility of singular integral in method of moments
    Ji, Jinzu
    Huang, Peilin
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2014, 25 (03) : 386 - 392
  • [9] Series expansion feasibility of singular integral in method of moments
    Jinzu Ji
    Peilin Huang
    [J]. Journal of Systems Engineering and Electronics, 2014, 25 (03) : 386 - 392
  • [10] Higher order cumulant based parameter estimation in nonlinear time series models
    Markusson, O
    Hjalmarsson, H
    [J]. PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 4888 - 4889