A New Modular Strategy for Action Sequence Automation using Neural Networks and Hidden Markov Models

被引:2
|
作者
Taher, Mohamed Adel [1 ]
Abdeljawad, Mostapha [1 ]
机构
[1] Alexandria Univ, Fac Engn, Marine Engn Dept, Alexandria, Egypt
关键词
Artificial Neural Networks (ANNs); Hidden Markov Models (HMMs); Normalized Gaussian Modified Lagrange Neural Network (NGML); Sequence Automation; Underwater Welding;
D O I
10.4018/ijsda.2013070102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the authors propose a new hybrid strategy (using artificial neural networks and hidden Markov models) for skill automation. The strategy is based on the concept of using an "adaptive desired" that is introduced in the paper. The authors explain how using an adaptive desired can help a system for which an explicit model is not available or is difficult to obtain to smartly cope with environmental disturbances without requiring explicit rules specification (as with fuzzy systems). At the same time, unlike the currently available hidden Markov-based systems, the system does not merely replay a memorized skill. Instead, it takes into account the current system state as reported by sensors. The authors approach can be considered a bridge between the spirit of conventional automatic control theory and fuzzy/hidden Markov-based thinking. To demonstrate the different aspects of the proposed strategy, the authors discuss its application to underwater welding automation.
引用
收藏
页码:18 / 35
页数:18
相关论文
共 50 条
  • [1] Hidden Markov Models for Recognition Using Artificial Neural Networks
    Bevilacqua, V.
    Mastronardi, G.
    Pedone, A.
    Romanazzi, G.
    Daleno, D.
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 126 - 134
  • [2] Telephone speech recognition using neural networks and hidden Markov models
    Yuk, D
    Flanagan, J
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 157 - 160
  • [3] Telephone speech recognition using neural networks and hidden Markov models
    Yuk, DongSuk
    Flanagan, James
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 1 : 157 - 160
  • [4] Protein function prediction using hidden Markov models and neural networks
    Fujiwara, Y
    Asogawa, M
    NEC RESEARCH & DEVELOPMENT, 2002, 43 (04): : 238 - 241
  • [5] Protein function prediction using hidden Markov models and neural networks
    Fujiwara, Yukiko
    Asogawa, Minoru
    NEC Research and Development, 2002, 43 (04): : 238 - 241
  • [6] Refining hidden Markov models with recurrent neural networks
    Wessels, T
    Omlin, CW
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL II, 2000, : 271 - 276
  • [7] Dynamic classification of ballistic missiles using neural networks and hidden Markov models
    Singh, Upendra Kumar
    Padmanabhan, Vineet
    Agarwal, Arun
    APPLIED SOFT COMPUTING, 2014, 19 : 280 - 289
  • [8] Supply Sequence Modelling Using Hidden Markov Models
    Borucka, Anna
    Kozlowski, Edward
    Parczewski, Rafal
    Antosz, Katarzyna
    Gil, Leszek
    Pieniak, Daniel
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [9] Hidden Markov Neural Networks
    Rimella, Lorenzo
    Whiteley, Nick
    ENTROPY, 2025, 27 (02)
  • [10] HIDDEN MARKOV MODELS AND NEURAL NETWORKS IN FORMATION OF INVESTMENT PORTFOLIO
    Novikov, P. A.
    Valiev, R. R.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2018, 160 (02): : 357 - 363