NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION BY DELTA SEQUENCES

被引:3
|
作者
ISOGAI, E [1 ]
机构
[1] NIIGATA UNIV,DEPT MATH,NIIGATA 95021,JAPAN
关键词
NONPARAMETRIC REGRESSION; MEAN SQUARE CONVERGENCE; STRONG CONSISTENCY; DELTA SEQUENCES;
D O I
10.1007/BF02481145
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A somewhat more general class of nonparametric estimators for estimating an unknown regression function g from noisy data is proposed. The regressor is assumed to be defined on the closed interval [0, 1]. This class of estimators is shown to be pointwisely consistent in the mean square sense and with probability one. Further, it turns out that these estimators can be applied to a wide class of noises.
引用
收藏
页码:699 / 708
页数:10
相关论文
共 50 条