Choice of estimators based on Kullback-Leibler risk

被引:0
|
作者
Liquet, Benoit [1 ]
机构
[1] Univ Victor, INSERM, ISPED U 897, Segalen Bordeaux 2, F-33076 Bordeaux, France
来源
JOURNAL OF THE SFDS | 2010年 / 151卷 / 01期
关键词
AIC criterion; incomplete data; Kullback-Leibler risk; model selection; cross-validation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimators choice is a crucial topic in statistics. The most famous criterion is the Akaike information criterion. It has been constructed as an approximation, up to a constant, of the Kullback-Leibler risk. However, a precise value of the Akaike criterion has no direct interpretation and its variability is often ignored. We propose several approaches to estimate Kullback-Leibler risks. The criteria defined can be used in a parametric, non-parametric or semi-parametric context. An extension of these criteria for incomplete data is presented. The issue of the choice of estimators in the presence of incomplete data is described. Several applications in the survival framework is described: smooth estimators choice for the hazard function, estimators choice from proportional hazard model and stratified model, and estimators choice for markov model and non markov model. Finally, several criteria are defined for selecting estimators based on different observations.
引用
收藏
页码:38 / 57
页数:20
相关论文
共 50 条
  • [1] Decomposition of Kullback-Leibler risk and unbiasedness for parameter-free estimators
    Wu, Qiang
    Vos, Paul
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) : 1525 - 1536
  • [2] Estimators for the binomial distribution that dominate the MLE in terms of Kullback-Leibler risk
    Vos, Paul
    Wu, Qiang
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2012, 64 (02) : 359 - 371
  • [3] Matrix CFAR detectors based on symmetrized Kullback-Leibler and total Kullback-Leibler divergences
    Hua, Xiaoqiang
    Cheng, Yongqiang
    Wang, Hongqiang
    Qin, Yuliang
    Li, Yubo
    Zhang, Wenpeng
    [J]. DIGITAL SIGNAL PROCESSING, 2017, 69 : 106 - 116
  • [4] Asymptotical improvement of maximum likelihood estimators on Kullback-Leibler loss
    Eguchi, Shinto
    Yanagimoto, Takemi
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (11) : 3502 - 3511
  • [5] Probabilistic Pairwise Model Comparisons Based on Bootstrap Estimators of the Kullback-Leibler Discrepancy
    Dajles, Andres
    Cavanaugh, Joseph
    [J]. ENTROPY, 2022, 24 (10)
  • [6] The Kullback-Leibler autodependogram
    Bagnato, L.
    De Capitani, L.
    Punzo, A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (14) : 2574 - 2594
  • [7] THE KULLBACK-LEIBLER DISTANCE
    KULLBACK, S
    [J]. AMERICAN STATISTICIAN, 1987, 41 (04): : 340 - 340
  • [8] Optimal exponential bounds for aggregation of estimators for the Kullback-Leibler loss
    Butucea, Cristina
    Delmas, Jean-Francois
    Dutfoy, Anne
    Fischer, Richard
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 2258 - 2294
  • [9] Choice of Prognostic Estimators in Joint Models by Estimating Differences of Expected Conditional Kullback-Leibler Risks
    Commenges, Daniel
    Liquet, Benoit
    Proust-Lima, Cecile
    [J]. BIOMETRICS, 2012, 68 (02) : 380 - 387
  • [10] A Cautionary Note on Model Choice and the Kullback-Leibler Information
    Heyde, C. C.
    Au, K.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2008, 2 (02) : 221 - 232