SPRAY COOLING OF POWER ELECTRONICS AT CRYOGENIC TEMPERATURES

被引:45
|
作者
SEHMBEY, MS
CHOW, LC
HAHN, OJ
PAIS, MR
机构
[1] University of Kentucky, Lexington, KY
关键词
D O I
10.2514/3.637
中图分类号
O414.1 [热力学];
学科分类号
摘要
The operation of power electronics at liquid nitrogen temperature (LNT) is a very attractive possibility. However, a high heat flux (over 1.0 x 10(6) W/m(2)) cooling technique, like spray cooling, will have to be used to realize all the advantages of low-temperature operation. This study details the results from experiments conducted to study the heat transfer characteristics during spray cooling with liquid nitrogen. Four different nozzles at various pressures were used to study the variation in spray cooling heat transfer at LNT. The effect of nozzle and now rate on the critical heat flux and overall heat transfer characteristics are presented. Heat fluxes close to 1.7 x 10(6) W/m(2) were realized at temperatures below 100 K. The mass flow rate range was from 6.1 x 10(4) kg/h(.)m(2) to 3.2 x 10(5) kg/h(.)m(2).
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [1] Review of Power Electronics Components at Cryogenic Temperatures
    Gui, Handong
    Chen, Ruirui
    Niu, Jiahao
    Zhang, Zheyu
    Tolbert, Leon M.
    Wang, Fei
    Blalock, Benjamin J.
    Costinett, Daniel
    Choi, Benjamin B.
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (05) : 5144 - 5156
  • [2] Design and Operation of a Cost-Effective Cooling Chamber for Testing Power Electronics at Cryogenic Temperatures
    Buettner, Stefanie
    Windisch, Julian
    Maerz, Martin
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2023, 26 (03) : 46 - 51
  • [3] Review of power electronics converters and associated components/systems at cryogenic temperatures
    Ul-Hassan M.
    Azadeh Y.
    Emon A.I.
    Luo F.
    [J]. Int. J. Powertrains, 2-3 (243-263): : 243 - 263
  • [4] Thermoelectric cooling at cryogenic temperatures
    Harutyunyan, SR
    Vardanyan, VH
    Kuzanyan, AS
    Nikoghosyan, VR
    Kunii, S
    Wood, KS
    Gulian, AM
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (11) : 2142 - 2144
  • [5] Evaporative spray cooling of power electronics using high temperature coolant
    Turek, Louis J.
    Rini, Daniel P.
    Saarloos, Benjamin A.
    Chow, Louis C.
    [J]. 2008 11TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, VOLS 1-3, 2008, : 346 - +
  • [6] Characteristics of P-I-N power diodes for power electronics operated at cryogenic temperatures
    Prasertsit, A
    Jackson, VD
    [J]. 2002 37TH INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE (IECEC), 2002, : 704 - 704
  • [7] Inkjet assisted spray cooling of electronics
    Bash, CE
    Patel, CD
    Sharma, RK
    [J]. ADVANCES IN ELECTRONIC PACKAGING 2003, VOL 2, 2003, : 119 - 127
  • [8] Spray Cooling of Power Electronics Using High Temperature Coolant and Enhanced Surface
    Bostanci, Huseyin
    Van Ee, David
    Saarloos, Benjamin A.
    Rini, Daniel P.
    Chow, Louis C.
    [J]. 2009 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VOLS 1-3, 2009, : 549 - 553
  • [9] Evaporative Cooling of Antiprotons to Cryogenic Temperatures
    Andresen, G. B.
    Ashkezari, M. D.
    Baquero-Ruiz, M.
    Bertsche, W.
    Bowe, P. D.
    Butler, E.
    Cesar, C. L.
    Chapman, S.
    Charlton, M.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Hangst, J. S.
    Hardy, W. N.
    Hayano, R. S.
    Hayden, M. E.
    Humphries, A.
    Hydomako, R.
    Jonsell, S.
    Kurchaninov, L.
    Lambo, R.
    Madsen, N.
    Menary, S.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Povilus, A.
    Pusa, P.
    Robicheaux, F.
    Sarid, E.
    Silveira, D. M.
    So, C.
    Storey, J. W.
    Thompson, R. I.
    van der Werf, D. P.
    Wilding, D.
    Wurtele, J. S.
    Yamazaki, Y.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [10] New insights into intermittent spray cooling for high-power electronics applications
    Ni, Qin
    Lu, Wenjie
    Liu, Bingqing
    He, Juan
    Ling, Xiang
    [J]. Applied Thermal Engineering, 2025, 261