In this paper the low-energy limit of the BESS model is studied in a systematic way. The method consists in eliminating the heavy vector field, by use of its classical equations of motion, in the infinite mass limit. After the elimination of the heavy degrees of freedom we get additional terms to the Standard Model Lagrangian. After a finite renormalization of the ordinary gauge bosons wave functions, and redefinition of the Lagrangian couplings in terms of M(Z), the fine structure constant and the Fermi constant, we can read directly the deviations from the Standard Model. By this procedure we can extend a result previously derived to the case in which the heavy vector bosons have a direct coupling to fermions. Consequences for the anomalous trilinear couplings are discussed.