FINITE-DIFFERENCE FREQUENCY-DOMAIN (FDFD) MODELING OF EMI BY ESD

被引:6
|
作者
ANGELI, M
CARDELLI, E
机构
[1] Istituto di Energetica, Università di Perugia, 06125 Perugia, Str. S. Lucia Canetola
关键词
D O I
10.1109/20.376450
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with a numerical modelling of the interferences produced by electrostatic discharges that reach the surface of metallic boxes containing electronic circuits and flow toward the ground connections. The waveform of the interfering current assumed is taken from the draft of the CENELEC ESD Standard. The distribution of the current density into the enclosure during the electrostatic discharge event is deduced by means of a scalar magnetic potential approach in the frequency domain, and by a consequent finite difference discretization. The passages from the frequency domain to the time domain and forward are made using the discrete Fourier transform. This formulation of the problem allows the simulation grid to be reduced to only the metallic enclosure, saving time either in preparation of the input data or in the numerical computation. The electromagnetic interferences radiated by the enclosure during the electrostatic discharge event are directly computed by multipole expansion of the resulting current density distribution.
引用
收藏
页码:2064 / 2067
页数:4
相关论文
共 50 条
  • [1] Finite-difference frequency-domain (FDFD) modelling of EMI by ESD
    Angeli, Marco
    Cardelli, Ermanno
    [J]. 1600, IEEE, Piscataway, NJ, United States (31):
  • [2] An Algorithm for Efficient Solution of Finite-Difference Frequency-Domain (FDFD) Methods
    Demir, Veysel
    Alkan, Erdogan
    Elsherbeni, Atef Z.
    Arvas, Ercument
    [J]. IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2009, 51 (06) : 143 - 150
  • [3] GRAPHICS PROCESSOR UNIT (GPU) ACCELERATION OF FINITE-DIFFERENCE FREQUENCY-DOMAIN (FDFD) METHOD
    Demir, V.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2012, 23 : 29 - 51
  • [4] Graphical Processing Units (GPU) acceleration of Finite-Difference Frequency-Domain (FDFD) Technique
    Zainud-Deen, S. H.
    El-Deen, Emad
    Ibrahim, Mourad S.
    Botros, A. Z.
    [J]. NRSC: 2009 NATIONAL RADIO SCIENCE CONFERENCE: NRSC 2009, VOLS 1 AND 2, 2009, : 1022 - 1022
  • [5] An iterative solver for the finite-difference frequency-domain (FDFD) method for the simulation of materials with negative permittivity
    Pflaum, Christoph
    Rahimi, Zhabiz
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (04) : 653 - 670
  • [6] FDFD: A 3D finite-difference frequency-domain code for electromagnetic induction tomography
    Champagne, NJ
    Berryman, JG
    Buettner, HM
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) : 830 - 848
  • [7] Modeling of Nanophotonic Resonators With the Finite-Difference Frequency-Domain Method
    Ivinskaya, Aliaksandra M.
    Lavrinenko, Andrei V.
    Shyroki, Dzmitry M.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (11) : 4155 - 4161
  • [8] Multiscale finite-difference method for frequency-domain acoustic wave modeling
    Jiang, Wei
    Chen, Xuehua
    Jiang, Shuaishuai
    Zhang, Jie
    [J]. GEOPHYSICS, 2021, 86 (04) : T193 - T210
  • [9] A simple finite-difference frequency-domain (FDFD) algorithm for analysis of switching noise in printed circuit boards and packages
    Ramahi, OM
    Subramanian, V
    Archambeault, B
    [J]. IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2003, 26 (02): : 191 - 198
  • [10] Frequency-Domain Finite-Difference Elastic Wave Modeling in the Presence of Surface Topography
    Zhao, Zhencong
    Chen, Jingyi
    Liu, Xiaobo
    [J]. PURE AND APPLIED GEOPHYSICS, 2020, 177 (06) : 2821 - 2839