TOTAL CHROMATIC NUMBER OF COMPLETE R-PARTITE GRAPHS

被引:8
|
作者
CHEW, KH
YAP, HP
机构
[1] Department of Mathematics, National University of Singapore
关键词
D O I
10.1002/jgt.3190160608
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rosenfeld (1971) proved that the Total Colouring Conjecture holds for balanced complete r-partite graphs. Bermond (1974) determined the exact total chromatic number of every balanced complete r-partite graph. Rosenfeld's result had been generalized recently to complete r-partite graphs by Yap (1 989). The main result of this paper is to prove that the total chromatic number of every complete r-partite graph G of odd order is DELTA(G) + 1. This result gives a partial generalization of Bermond's theorem.
引用
收藏
页码:629 / 634
页数:6
相关论文
共 50 条
  • [1] TOTAL CHROMATIC NUMBER OF COMPLETE R-PARTITE GRAPH
    BERMOND, JC
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (DEC): : 279 - 285
  • [2] Determining equitable total chromatic number for infinite classes of complete r-partite graphs
    da Silva, A. G.
    Dantas, S.
    Sasaki, D.
    DISCRETE APPLIED MATHEMATICS, 2021, 296 (296) : 56 - 67
  • [3] The intersection number of complete r-partite graphs
    Discrete Math Appl, 2008, 2 (187-197):
  • [4] The intersection number of complete r-partite graphs
    Bolshakova, N. S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2008, 18 (02): : 187 - 197
  • [5] Factors of r-partite graphs and bounds for the Strong Chromatic Number
    Johansson, Anders
    Johansson, Robert
    Markstrom, Klas
    ARS COMBINATORIA, 2010, 95 : 277 - 287
  • [6] Total interval numbers of complete r-partite graphs
    Chen, MJ
    Chang, GJ
    DISCRETE APPLIED MATHEMATICS, 2002, 122 (1-3) : 83 - 92
  • [7] CHROMATIC POLYNOMIAL OF A COMPLETE R-PARTITE GRAPH
    LASKAR, R
    HARE, WR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A655 - A655
  • [8] On the line graphs of the complete r-partite graphs
    Zornig, P
    DISCRETE MATHEMATICS, 1997, 171 (1-3) : 277 - 282
  • [9] Integral complete r-partite graphs
    Wang, LG
    Li, XL
    Hoede, C
    DISCRETE MATHEMATICS, 2004, 283 (1-3) : 231 - 241
  • [10] CHROMATIC POLYNOMIAL OF A COMPLETE R-PARTITE GRAPH
    LASKAR, R
    HARE, WR
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (07): : 752 - 754