Minimum weight Euclidean t-spanner is NP-hard

被引:4
|
作者
Carmi, Paz [1 ]
Chaitman-Yerushalmi, Lilach [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Comp Sci, Negev, Israel
基金
以色列科学基金会;
关键词
Computational geometry; Geometry spanner; NP-hardness;
D O I
10.1016/j.jda.2013.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a set P of points in the plane, an Euclidean t-spanner for P is a geometric graph that preserves the Euclidean distances between every pair of points in P up to a constant factor t. The weight of a geometric graph refers to the total length of its edges. In this paper we show that the problem of deciding whether there exists an Euclidean t-spanner, for a given set of points in the plane, of weight at most w is NP-hard for every real constant t > 1, both whether planarity of the t-spanner is required or not. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 42
页数:13
相关论文
共 50 条
  • [1] Minimum-weight triangulation is NP-hard
    Mulzer, Wolfgang
    Rote, Guenter
    [J]. JOURNAL OF THE ACM, 2008, 55 (02)
  • [2] The realization problem for Euclidean minimum spanning trees is NP-Hard
    Eades, P
    Whitesides, S
    [J]. ALGORITHMICA, 1996, 16 (01) : 60 - 82
  • [3] The Euclidean Degree-4 Minimum Spanning Tree Problem is NP-hard
    Francke, Andrea
    Hoffmann, Michael
    [J]. PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 179 - 188
  • [4] δ-Greedy t-spanner
    Abu-Affash, A. Karim
    Bar-On, Gali
    Carmi, Paz
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100
  • [5] Improved NP-hardness results for the minimum t-spanner problem on bounded-degree graphs
    Gomez, Renzo
    Miyazawa, Flavio Keidi
    Wakabayashi, Yoshiko
    [J]. THEORETICAL COMPUTER SCIENCE, 2023, 947
  • [6] δ-Greedy t-spanner
    Bar-On, Gali
    Carmi, Paz
    [J]. ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 85 - 96
  • [7] Minimum Bisection Is NP-hard on Unit Disk Graphs
    Diaz, Josep
    Mertzios, George B.
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PT II, 2014, 8635 : 251 - 262
  • [8] Finding the Minimum Number of Face Guards is NP-Hard
    Iwamoto, Chuzo
    Kitagaki, Yusuke
    Morita, Kenichi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (11) : 2716 - 2719
  • [9] Minimum bisection is NP-hard on unit disk graphs
    Diaz, Josep
    Mertzios, George B.
    [J]. INFORMATION AND COMPUTATION, 2017, 256 : 83 - 92
  • [10] On Constructing t-Spanner in IoT under SINRI
    Zhang, Xiujuan
    Wang, Yongcai
    Chen, Wenping
    Zhu, Yuqing
    Li, Deying
    Li, Guangshun
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021