GOODNESS-OF-FIT TESTS FOR SPECTRAL DISTRIBUTIONS

被引:55
|
作者
ANDERSON, TW
机构
来源
ANNALS OF STATISTICS | 1993年 / 21卷 / 02期
关键词
GOODNESS OF FIT TESTS; SPECTRAL DISTRIBUTIONS; CRAMER-VONMISES TEST; KOLMOGOROV-SMIRNOV TEST; FREDHOLM DETERMINANT;
D O I
10.1214/aos/1176349153
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The spectral distribution function of a stationary stochastic process standardized by dividing by the variance of the process is a linear function of the autocorrelations. The integral of the sample standardized spectral density (periodogram) is a similar linear function of the autocorrelations. As the sample size increases, the difference of these two functions multiplied by the square root of the sample size converges weakly to a Gaussian stochastic process with a continuous time parameter. A monotonic transformation of this parameter yields a Brownian bridge plus an independent random term. The distributions of functionals of this process are the limiting distributions of goodness of fit criteria that are used for testing hypotheses about the process autocorrelations. An application is to tests of independence (flat spectrum). The characteristic function of the Cramer-von Mises statistic is obtained; inequalities for the Kolmogorov-Smirnov criterion are given. Confidence regions for unspecified process distributions are found.
引用
收藏
页码:830 / 847
页数:18
相关论文
共 50 条
  • [1] Goodness-of-fit tests for parametric distributions
    Orlov, AI
    [J]. INDUSTRIAL LABORATORY, 1997, 63 (05): : 303 - 304
  • [2] Goodness-of-fit tests for multivariate distributions
    Sueruecue, Baris
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (07) : 1319 - 1331
  • [3] Conditional Goodness-of-Fit Tests for Discrete Distributions
    Rasmus Erlemann
    Bo Henry Lindqvist
    [J]. Journal of Statistical Theory and Practice, 2022, 16
  • [4] Conditional Goodness-of-Fit Tests for Discrete Distributions
    Erlemann, Rasmus
    Lindqvist, Bo Henry
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (01)
  • [5] Goodness-of-fit tests for multivariate Laplace distributions
    Fragiadakis, Konstantinos
    Meintanis, Simos G.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) : 769 - 779
  • [6] NEW GOODNESS-OF-FIT TESTS FOR PARETO DISTRIBUTIONS
    Rizzo, Maria L.
    [J]. ASTIN BULLETIN, 2009, 39 (02): : 691 - 715
  • [7] Goodness-of-fit tests for the spatial spectral density
    Crujeiras, Rosa M.
    Fernandez-Casal, Ruben
    Gonzalez-Manteiga, Wenceslao
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (01) : 67 - 79
  • [8] Goodness-of-fit tests for the spatial spectral density
    Rosa M. Crujeiras
    Rubén Fernández-Casal
    Wenceslao González-Manteiga
    [J]. Stochastic Environmental Research and Risk Assessment, 2010, 24 : 67 - 79
  • [9] Characterizations of normal distributions and EDF goodness-of-fit tests
    Truc T. Nguyen
    Khoan T. Dinh
    [J]. Metrika, 2003, 58 : 149 - 157
  • [10] Goodness-of-fit tests for the inverse Gaussian and related distributions
    Gilles R. Ducharme
    [J]. Test, 2001, 10 : 271 - 290