CHAOTIC AND HOMOCLINIC BEHAVIOR FOR NUMERICAL DISCRETIZATIONS OF THE NONLINEAR SCHRODINGER-EQUATION

被引:49
|
作者
MCLAUGHLIN, DW
SCHOBER, CM
机构
[1] PRINCETON UNIV,PROGRAM APPL & COMPUTAT MATH,PRINCETON,NJ 08544
[2] UNIV ARIZONA,PROGRAM APPL MATH,TUCSON,AZ 85721
来源
PHYSICA D | 1992年 / 57卷 / 3-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(92)90013-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Certain conservative discretizations of the NLS can produce irregular behavior. We consider the diagonal discretization as a conservative perturbation of the integrable discretization and study the homoclinic crossings in its nonlinear spectrum. We find that irregularity sets in when two homoclinic structures are present and, in this case, many and continual homoclinic crossings occur throughout the irregular time series. We indicate a Melnikov analysis to study the consequences of this homoclinic behavior.
引用
收藏
页码:447 / 465
页数:19
相关论文
共 50 条