ON EPSILON-OPTIMAL CONTINUOUS SELECTORS AND THEIR APPLICATION IN DISCOUNTED DYNAMIC-PROGRAMMING

被引:1
|
作者
KUCIA, A
NOWAK, A
机构
[1] Silesian Univ, Katowice, Pol, Silesian Univ, Katowice, Pol
关键词
MATHEMATICAL PROGRAMMING; DYNAMIC;
D O I
10.1007/BF00939436
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let X, Y be topological spaces, phi :X yields 2**Y a multifunction, and u a real-valued function defined on the graph of phi . We give sufficient conditions for the existence of a continuous selector f for phi such that u(x,f(x)) greater than equivalent to sup left brace u(x,y): y an element of phi (x) left brace minus epsilon , x an element of X, where epsilon greater than 0. This result is applied to the stochastic discounted dynamic programming problem. We establish the existence of an epsilon -optimal continuous stationary policy.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 50 条