ON EXPONENTIAL YANG-MILLS CONNECTIONS

被引:2
|
作者
MATSUURA, F [1 ]
URAKAWA, H [1 ]
机构
[1] TOHOKU UNIV,GRAD SCH INFORMAT SCI,MATH LABS,SENDAI,MIYAGI 980,JAPAN
关键词
EXPONENTIAL YANG-MILLS CONNECTION; EXPONENTIAL YANG-MILLS FUNCTIONAL; CONFORMAL;
D O I
10.1016/0393-0440(94)00041-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a new functional, i.e., the exponential Yang-Mills functional Y M(e) on the space of all smooth connections del of a vector bundle E over a compact Riemannian manifold (M, g) which is defined by Y M(e)(del) = integral(M) exp(1/2\\R(del)\\(2))upsilon(g), where \\R(del)\\ is the curvature tenser of a connection del. A critical point of Y M(c) is called an exponential Yang-Mills connection. If \\R(del)\\ is constant, a smooth connection del is an exponential Yang-Mills connection if it is a Yang-Mills one. We show for any vector bundle E, that the functional Y M(e) admits a minimising connection del which is C(a)lpha-Holder continuous for all 0 < alpha < 1. We show the existence theorem of a smooth exponential Yang-Mills connection and study its properties and the second variation formula.
引用
收藏
页码:73 / 89
页数:17
相关论文
共 50 条