Catalytic Effect of Metal Species on Enhancement of CO2 Gasification Reactivity of Biomass Char

被引:4
|
作者
Lahijani, P. [1 ]
Mohammadi, M. [2 ]
机构
[1] Univ Sains Malaysia, Sch Mech Engn, Biomass & Bioenergy Lab, Nibong Tebal, Pulau Pinang, Malaysia
[2] Babol Noushirvani Univ Technol, Fac Chem Engn, Babol Sar, Iran
来源
INTERNATIONAL JOURNAL OF ENGINEERING | 2015年 / 28卷 / 09期
关键词
CO2; gasification; Biomass Char; Catalyst; Boudouard Reaction;
D O I
10.5829/idosi.ije.2015.28.09c.01
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the Boudouard reaction, where CO2 is reacted with carbon (char) to produce CO, very high temperatures are required to shift the equilibrium towards CO production. This endothermic reaction is inherently slow and catalytic species are effective to speed up the reaction rate at temperatures below 900 degrees C. In this study, the catalytic effect of some alkali (K, Na), alkaline earth (Ca) and transition (Fe) metals on enhancing the CO2 gasification reactivity of pistachio shell (PS) char was investigated. The CO2 gasification studies were performed in a Thermogravimetric analyzer (TGA). Among the examined potassium species, K2CO3 showed the highest catalytic effect; wherein, complete carbon conversion was achieved 48.1% faster as compared to un-catalyzed PS char. The highest catalytic effect among the sodium salts was devoted to NaNO3 which showed 57.7% enhancement in the reactivity of char. CaCl2 and Fe(NO3)(2) also showed the best catalytic performance among the examined calcium and iron species and improved the reaction rate by 64.6 and 46.1%, respectively.
引用
收藏
页码:1251 / 1256
页数:6
相关论文
共 50 条
  • [1] Gasification of woody biomass char with CO2: The catalytic effects of K and Ca species on char gasification reactivity
    Mitsuoka, Keiichirou
    Hayashi, Shigeya
    Amano, Hiroshi
    Kayahara, Kenji
    Sasaoaka, Eiji
    Uddin, Md Azhar
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (01) : 26 - 31
  • [2] Effects of metal catalysts on CO2 gasification reactivity of biomass char
    Huang, Yanqin
    Yin, Xiuli
    Wu, Chuangzhi
    Wang, Congwei
    Xie, Jianjun
    Zhou, Zhaoqiu
    Ma, Longlong
    Li, Haibin
    BIOTECHNOLOGY ADVANCES, 2009, 27 (05) : 568 - 572
  • [3] Catalytic effect of alkali metal in biomass ash on the gasification of coal char in CO2
    Qin, Yuhong
    He, Yanyun
    Ren, Weiping
    Gao, Mengjiao
    Wiltowski, Tomasz
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (05) : 3079 - 3089
  • [4] Catalytic effect of alkali metal in biomass ash on the gasification of coal char in CO2
    Yuhong Qin
    Yanyun He
    Weiping Ren
    Mengjiao Gao
    Tomasz Wiltowski
    Journal of Thermal Analysis and Calorimetry, 2020, 139 : 3079 - 3089
  • [5] Catalytic effect of iron species on CO2 gasification reactivity of oil palm shell char
    Lahijani, Pooya
    Zainal, Zainal Alimuddin
    Mohamed, Abdul Rahman
    THERMOCHIMICA ACTA, 2012, 546 : 24 - 31
  • [6] Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process
    Lahijani, Pooya
    Zainal, Zainal Alimuddin
    Mohamed, Abdul Rahman
    Mohammadi, Maedeh
    BIORESOURCE TECHNOLOGY, 2013, 138 : 124 - 130
  • [7] CO2 gasification reactivity of biomass char: Catalytic influence of alkali, alkaline earth and transition metal salts
    Lahijani, Pooya
    Zainal, Zainal Alimuddin
    Mohamed, Abdul Rahman
    Mohammadi, Maedeh
    BIORESOURCE TECHNOLOGY, 2013, 144 : 288 - 295
  • [8] Isothermal CO2 Gasification Reactivity and Kinetic Models of Biomass Char/Anthracite Char
    Zuo, Hai-Bin
    Zhang, Peng-Cheng
    Zhang, Jian-Liang
    Bi, Xiao-Tao
    Geng, Wei-Wei
    Wang, Guang-Wei
    BIORESOURCES, 2015, 10 (03): : 5242 - 5255
  • [9] Assessment of the catalytic effect of various biomass ashes on CO2 gasification of tire char
    Czerski, Grzegorz
    Spiewak, Katarzyna
    Grzywacz, Przemyslaw
    Wieronska-Wisniewska, Faustyna
    JOURNAL OF THE ENERGY INSTITUTE, 2021, 99 : 170 - 177
  • [10] CO2 Gasification Reactivity of Char from High-Ash Biomass
    Phounglamcheik, Aekjuthon
    Vila, Ricardo
    Kienzl, Norbert
    Wang, Liang
    Hedayati, Ali
    Brostrom, Markus
    Ramser, Kerstin
    Engvall, Klas
    Skreiberg, Oyvind
    Robinson, Ryan
    Umeki, Kentaro
    ACS OMEGA, 2021, 6 (49): : 34115 - 34128