AN IMPROVED SEQUENTIAL PROCEDURE FOR ESTIMATING THE REGRESSION PARAMETER IN REGRESSION-MODELS WITH SYMMETRICAL ERRORS

被引:3
|
作者
SRIRAM, TN
机构
来源
ANNALS OF STATISTICS | 1992年 / 20卷 / 03期
关键词
SEQUENTIAL PROCEDURE; REGRESSION; LEAST SQUARES ESTIMATE; REGRET; STOPPING RULE;
D O I
10.1214/aos/1176348777
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A sequential procedure for estimating the regression parameter beta is-an-element-of R(k) in a regression model with symmetric errors is proposed. This procedure is shown to have asymptotically smaller regret than the procedure analyzed by Martinsek when beta = 0, and the same asymptotic regret as that procedure when beta not-equal 0. Consequently, even when the errors are normally distributed, it follows that the asymptotic regret can be negative when beta = 0. These results extend a recent work of Takada dealing with the estimation of the normal mean, to both regression and nonnormal cases.
引用
收藏
页码:1441 / 1453
页数:13
相关论文
共 50 条