SINGULAR-VALUE DECOMPOSITION VIA GRADIENT AND SELF-EQUIVALENT FLOWS

被引:28
|
作者
HELMKE, U [1 ]
MOORE, JB [1 ]
机构
[1] AUSTRALIAN NATL UNIV,DEPT SYST ENGN,CANBERRA,ACT 2600,AUSTRALIA
关键词
D O I
10.1016/0024-3795(92)90180-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The task of finding the singular-value decomposition (SVD) of a finite-dimensional complex linear operator is here addressed via gradient flows evolving on groups of complex unitary matrices and associated self-equivalent flows. The work constitutes a generalization of that of Brockett on the diagonalization of real symmetric matrices via gradient flows on orthogonal matrices and associated isospectral flows. It complements results of Symes, Chu, and other authors on continuous analogs of the classical QR algorithm as well as earlier work by the authors on SVD via gradient flows on positive definite matrices.
引用
收藏
页码:223 / 248
页数:26
相关论文
共 50 条
  • [1] SELF-EQUIVALENT FLOWS ASSOCIATED WITH THE SINGULAR VALUE DECOMPOSITION
    WATKINS, DS
    ELSNER, L
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1989, 10 (02) : 244 - 258
  • [2] Computational spectroscopy via singular-value decomposition and regularization
    Wang, Peng
    Menon, Rajesh
    [J]. OPTICS EXPRESS, 2014, 22 (18): : 21541 - 21550
  • [3] DOWNDATING THE SINGULAR-VALUE DECOMPOSITION
    GU, M
    EISENSTAT, SC
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (03) : 793 - 810
  • [4] SINGULAR-VALUE DECOMPOSITION AND EMBEDDING DIMENSION
    MEES, AI
    RAPP, PE
    JENNINGS, LS
    [J]. PHYSICAL REVIEW A, 1987, 36 (01): : 340 - 346
  • [5] A CAVEAT CONCERNING SINGULAR-VALUE DECOMPOSITION
    NEWMAN, M
    SARDESHMUKH, PD
    [J]. JOURNAL OF CLIMATE, 1995, 8 (02) : 352 - 360
  • [6] Singular-value decomposition of a tomosynthesis system
    Burvall, Anna
    Barrett, Harrison H.
    Myers, Kyle J.
    Dainty, Christopher
    [J]. OPTICS EXPRESS, 2010, 18 (20): : 20699 - 20711
  • [7] ON THE EARLY HISTORY OF THE SINGULAR-VALUE DECOMPOSITION
    STEWART, GW
    [J]. SIAM REVIEW, 1993, 35 (04) : 551 - 566
  • [8] Applications of singular-value decomposition (SVD)
    Akritas, AG
    Malaschonok, GI
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 67 (1-2) : 15 - 31
  • [9] COMPUTING THE GENERALIZED SINGULAR-VALUE DECOMPOSITION
    BAI, ZJ
    DEMMEL, JW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06): : 1464 - 1486
  • [10] Paraunitary filter bank design via a polynomial singular-value decomposition
    Redif, S
    Cooper, T
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 613 - 616