AN INTEGRAL INEQUALITY FOR COMPACT MAXIMAL SURFACES IN N-DIMENSIONAL DE SITTER SPACE AND ITS APPLICATIONS

被引:4
|
作者
ALIAS, LJ
ROMERO, A
机构
[1] UNIV MURCIA,DEPT MATEMAT,E-30100 ESPINARDO,SPAIN
[2] UNIV GRANADA,DEPT GEOMETRIA & TOPOL,E-18071 GRANADA,SPAIN
关键词
MAXIMAL SURFACES; DE SITTER SPACE;
D O I
10.1007/BF00774561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove an integral inequality for the Gaussian curvature of compact maximal surfaces in n-dimensional de Sitter space. Some applications of that inequality are given in order to solve the associated Bernstein type problem as well as to characterize the totally geodesic immersion in terms of its area and the first nontrivial eigenvalue of its Laplacian.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条