THE PERIOD IN THE VOLTERRA-LOTKA PREDATOR-PREY MODEL

被引:31
|
作者
WALDVOGEL, J
机构
关键词
D O I
10.1137/0720098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1264 / 1272
页数:9
相关论文
共 50 条
  • [1] Stability in predator-prey models and discretization of a modified Volterra-Lotka model
    Krabs, W.
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2006, 12 (06) : 577 - 588
  • [3] THE PERIODIC PREDATOR-PREY LOTKA-VOLTERRA MODEL WITH IMPULSIVE EFFECT
    Tang, Sanyi
    Chen, Lansun
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2002, 2 (3-4) : 267 - 296
  • [4] DYNAMICS OF LOTKA-VOLTERRA PREDATOR-PREY MODEL CONSIDERING SATURATED REFUGE FOR PREY
    Almanza-Vasquez, Edilbert
    Gonzalez-Olivares, Eduardo
    Gonzalez-Yanez, Betsabe
    [J]. BIOMAT 2011: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2012, : 62 - 72
  • [5] Dynamic behaviors of Lotka-Volterra predator-prey model incorporating predator cannibalism
    Deng, Hang
    Chen, Fengde
    Zhu, Zhenliang
    Li, Zhong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [6] Convergence of solutions for Volterra-Lotka prey-predator systems with time delays
    Li, Yanling
    Wu, Jianhua
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (02) : 170 - 174
  • [7] Lotka-Volterra predator-prey model with periodically varying carrying capacity
    Swailem, Mohamed
    Tauber, Uwe C.
    [J]. PHYSICAL REVIEW E, 2023, 107 (06)
  • [8] A note on stability criteria in the periodic Lotka-Volterra predator-prey model
    Ortega, Victor
    Rebelo, Carlota
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 145
  • [9] DYNAMICS IN A COMPETITIVE LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH MULTIPLE DELAYS
    Xu, Changjin
    Wu, Yusen
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 231 - 244
  • [10] Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference
    Ma, Zhaozhi
    Chen, Fengde
    Wu, Chengqiang
    Chen, Wanlin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 7945 - 7953