A remark on the spectra of random graphs with given expected degrees

被引:1
|
作者
Shang, Yilun [1 ]
机构
[1] Univ Texas San Antonio, Inst Cyber Secur, San Antonio, TX 78249 USA
关键词
random graph; eigenvalue;
D O I
10.1080/09720529.2012.10698384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the largest eigenvalue of the adjacency matrix of a random graph G(w) with given expected degrees. Based on the estimation of the spectral gap of normalized Laplacian, we establish an upper bound for the largest adjacency eigenvalue of G(w) using wmax, the maximum expected degrees, and w u, the second order average degree.
引用
收藏
页码:317 / 321
页数:5
相关论文
共 50 条
  • [1] Spectra of random graphs with given expected degrees
    Chung, F
    Lu, LY
    Vu, V
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (11) : 6313 - 6318
  • [2] The average distances in random graphs with given expected degrees
    Chung, F
    Lu, LY
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) : 15879 - 15882
  • [3] Spectral partitioning of random graphs with given expected degrees
    Coja-Oghlan, Amin
    Goerdt, Andreas
    Lanka, Andre
    [J]. FOURTH IFIP INTERNATIONAL CONFERENCE ON THEORETICAL COMPUTER SCIENCE - TCS 2006, 2006, 209 : 271 - +
  • [4] The spectral gap of random graphs with given expected degrees
    Coja-Oghlan, Amin
    Lanka, Andre
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, 2006, 4051 : 15 - 26
  • [5] The spectral gap of random graphs with given expected degrees
    Coja-Oghlan, Amin
    Lanka, Andre
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [6] Spectra of random graphs with arbitrary expected degrees
    Nadakuditi, Raj Rao
    Newman, M. E. J.
    [J]. PHYSICAL REVIEW E, 2013, 87 (01)
  • [7] NON-HYPERBOLICITY OF RANDOM GRAPHS WITH GIVEN EXPECTED DEGREES
    Shang, Yilun
    [J]. STOCHASTIC MODELS, 2013, 29 (04) : 451 - 462
  • [8] Moment-Based Spectral Analysis of Random Graphs with Given Expected Degrees
    Preciado, Victor M.
    Rahimian, M. Amin
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2017, 4 (04): : 215 - 228
  • [9] On percolation in random graphs with given vertex degrees
    Janson, Svante
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 87 - 118
  • [10] Susceptibility of random graphs with given vertex degrees
    Janson, Svante
    [J]. JOURNAL OF COMBINATORICS, 2010, 1 (04) : 357 - 387