SEMICLASSICAL CHAOS, THE UNCERTAINTY PRINCIPLE, AND QUANTUM DISSIPATION

被引:31
|
作者
BONCI, L [1 ]
RONCAGLIA, R [1 ]
WEST, BJ [1 ]
GRIGOLINI, P [1 ]
机构
[1] UNIV N TEXAS, DEPT PHYS, DENTON, TX 76205 USA
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 12期
关键词
D O I
10.1103/PhysRevA.45.8490
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using the Wigner method, it is shown that a classical-like equation of motion for a quasiprobability distribution rho(W) can be built up, partial derivative-rho(W)/partial derivative t=(L(cl)+L(QGD))rho-W, which is rigorously equivalent to the quantum von Neumann-Liouville equation. The operator L(cl) is equivalent to integrating classical trajectories, which are then averaged over an initial distribution, broadened so as to fulfill the requirements of the quantum uncertainty principle. It is shown that this operator produces semiclassical chaos and is responsible for quantum irreversibility and the fast growth of quantum uncertainty. Carrying out explicit calculations for a spin-boson Hamiltonian, the joint action of L(cl) and L(QGD) is illustrated. It is shown that the latter operator L(QGD) (where QGD stands for quantum generating diffusion), makes the 1/2-spin system "remember" its quantum nature, and competes with the irreversibility induced by the former operator. Some ambiguous aspects of "irreversibility" and "growth of quantum fluctuations" as indicators of semiclassical chaos are discussed.
引用
收藏
页码:8490 / 8500
页数:11
相关论文
共 50 条
  • [1] Chaos in the quantum Duffing oscillator in the semiclassical regime under parametrized dissipation
    Maris, Andrew D.
    Pokharel, Bibek
    Seshachallam, Sharan Ganjam
    Misplon, Moses Z. R.
    Pattanayak, Arjendu K.
    [J]. PHYSICAL REVIEW E, 2021, 104 (02)
  • [2] Semiclassical localization and uncertainty principle
    Pennini, F.
    Plastino, A.
    Ferri, G. L.
    Olivares, F.
    [J]. PHYSICS LETTERS A, 2008, 372 (29) : 4870 - 4873
  • [3] SEMICLASSICAL MODEL FOR QUANTUM DISSIPATION
    KOWALSKI, AM
    PLASTINO, A
    PROTO, AN
    [J]. PHYSICAL REVIEW E, 1995, 52 (01): : 165 - 177
  • [4] SEMICLASSICAL LIMIT AND QUANTUM CHAOS
    LECHEMINANT, P
    [J]. JOURNAL DE PHYSIQUE I, 1993, 3 (02): : 299 - 309
  • [5] Semiquantum chaos and the uncertainty principle
    Kowalski, AM
    Martin, MT
    Nuñez, J
    Plastino, A
    Proto, AN
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (1-2) : 95 - 108
  • [6] A semiclassical statistical model for quantum dissipation
    Kowalski, AM
    Plastino, A
    Proto, AN
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 236 (3-4) : 429 - 447
  • [7] Quantum Bound to Chaos and the Semiclassical Limit
    Jorge Kurchan
    [J]. Journal of Statistical Physics, 2018, 171 : 965 - 979
  • [8] Quantum Bound to Chaos and the Semiclassical Limit
    Kurchan, Jorge
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2018, 171 (06) : 965 - 979
  • [9] CHAOS AND SEMICLASSICAL LIMIT IN QUANTUM COSMOLOGY
    CALZETTA, E
    GONZALEZ, JJ
    [J]. PHYSICAL REVIEW D, 1995, 51 (12): : 6821 - 6828
  • [10] Quantum chaos and the limits of semiclassical prediction
    Scharf, R
    Sundaram, B
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (02) : 263 - 266