W□P的r-hued染色

被引:0
|
作者
史雅馨 [1 ]
刘凤霞 [1 ]
蔡华 [2 ]
机构
[1] 新疆大学数学与系统科学学院
[2] 不详
关键词
(k,r)-染色; r-hued色数; 笛卡尔乘积图;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
图G的(k,r)-染色是对图G用k种颜色进行正常染色,使得图G任一点v的邻点至少染min{r,d(v)}种不同的颜色。使图G有一个(k,r)-染色的最小的整数k称为图G的r-hued色数,用χr(G)来表示。图G和H的笛卡尔乘积图记为GH,其顶点集为V(G)×V(H),(u1,v1)与(u2,v2)相邻当且仅当u1=u2,v1v2∈E(H)或v1=v2,u1u2∈E(G)。确定了WnPm的r-hued色数。
引用
收藏
页数:6
相关论文
共 8 条
  • [1] 路和平方路笛卡尔乘积图的r-多彩着色(英文)
    邵瑞芳
    左连翠
    [J]. 数学进展, 2019, 48 (01) : 21 - 28
  • [2] On r-hued coloring of product graphs[J] Liang Lingmei;Liu Fengxia;Wu Baoyindureng RAIRO - Operations Research 2022,
  • [3] On dynamic colouring of cartesian product of complete graph with some graphs[J] Kaliraj K.;Naresh Kumar H.;Vernold Vivin J. Journal of Taibah University for Science 2020,
  • [4] On r -dynamic coloring of graphs[J] Sogol Jahanbekam;Jaehoon Kim;Suil O;Douglas B. West Discrete Applied Mathematics 2016,
  • [5] On r -dynamic coloring of grids[J] Ross Kang;Tobias Müller;Douglas B. West Discrete Applied Mathematics 2015,
  • [6] On the Dynamic Coloring of Cartesian Product Graphs.[J] Saieed Akbari;Maryam Ghanbari;S. Jahanbekam Ars Comb. 2014,
  • [7] Conditional colorings of graphs[J] Hong-Jian Lai;Jianliang Lin;Bruce Montgomery;Taozhi Shui;Suohai Fan Discrete Mathematics 2006,
  • [8] Upper Bounds of Dynamic Chromatic Number.[J] Hong-Jian Lai;Bruce Montgomery;Hoifung Poon Ars Comb. 2003,