Few-Shot Named Entity Recognition with the Integration of Spatial Features

被引:0
|
作者
LIU Zhiwei [1 ]
HUANG Bo [1 ]
XIA Chunming [1 ]
XIONG Yujie [1 ]
ZANG Zhensen [2 ]
ZHANG Yongqiang [3 ]
机构
[1] College of Electrical and Electronic Engineering, Shanghai University of Engineering Science
[2] Shanghai Zhongyu Academy of Industrial Internet  3. AIoT Manufacturing Solutions Technology Co., Ltd.
关键词
D O I
暂无
中图分类号
TP391.1 [文字信息处理];
学科分类号
081203 ; 0835 ;
摘要
The few-shot named entity recognition(NER) task aims to train a robust model in the source domain and transfer it to the target domain with very few annotated data. Currently, some approaches rely on the prototypical network for NER. However, these approaches often overlook the spatial relations in the span boundary matrix because entity words tend to depend more on adjacent words. We propose using a multidimensional convolution module to address this limitation to capture short-distance spatial dependencies. Additionally, we utilize an improved prototypical network and assign different weights to different samples that belong to the same class, thereby enhancing the performance of the few-shot NER task. Further experimental analysis demonstrates that our approach has significantly improved over baseline models across multiple datasets.
引用
下载
收藏
页码:125 / 133
页数:9
相关论文
共 50 条
  • [1] Prompts in Few-Shot Named Entity Recognition
    Rozhkov, I. S.
    Loukachevitch, N. V.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2023, 33 (02) : 122 - 131
  • [2] Few-shot nested named entity recognition
    Ming, Hong
    Yang, Jiaoyun
    Gui, Fang
    Jiang, Lili
    An, Ning
    KNOWLEDGE-BASED SYSTEMS, 2024, 293
  • [3] Prompts in Few-Shot Named Entity Recognition
    I. S. Rozhkov
    N. V. Loukachevitch
    Pattern Recognition and Image Analysis, 2023, 33 : 122 - 131
  • [4] Few-shot classification in Named Entity Recognition Task
    Fritzler, Alexander
    Logacheva, Varvara
    Kretov, Maksim
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 993 - 1000
  • [5] FEW-NERD: A Few-shot Named Entity Recognition Dataset
    Ding, Ning
    Xu, Guangwei
    Chen, Yulin
    Wang, Xiaobin
    Han, Xu
    Xie, Pengjun
    Zheng, Hai-Tao
    Liu, Zhiyuan
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 3198 - 3213
  • [6] AutoDes: Few-Shot Named Entity Recognition with Class Descriptions
    Lu, Ting
    Hu, Yichun
    Liu, Guohua
    Huang, Qiubo
    Guo, Wenjing
    Chang, Shan
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [7] Few-Shot Named Entity Recognition: An Empirical Baseline Study
    Huang, Jiaxin
    Lie, Chunyuan
    Subudhi, Krishan
    Jose, Damien
    Balakrishnan, Shobana
    Chen, Weizhu
    Peng, Baolin
    Gao, Jianfeng
    Han, Jiawei
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 10408 - 10423
  • [8] LeArNER: Few-shot Legal Argument Named Entity Recognition
    Lee, Shao-Man
    Tan, Yu-Hsiang
    Yu, Han-Ting
    PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND LAW, ICAIL 2023, 2023, : 422 - 426
  • [9] Meta-Learning for Few-Shot Named Entity Recognition
    de Lichy, Cyprien
    Glaude, Hadrien
    Campbell, William
    1ST WORKSHOP ON META LEARNING AND ITS APPLICATIONS TO NATURAL LANGUAGE PROCESSING (METANLP 2021), 2021, : 44 - 58
  • [10] Attending to Entity Class Attributes for Named Entity Recognition with Few-Shot Learning
    Patel, Raj Nath
    Dutta, Sourav
    Assem, Haytham
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 859 - 870