Forecasting the Crude Oil Price with Extreme Values

被引:0
|
作者
Haibin XIE
Mo ZHOU
Yi HU
Mei YU
机构
[1] University of Chinese Academy of Sciences
[2] Research Center of Applied Finance
[3] University of International Business and Economics
[4] School of Management
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
F426.22 []; F764.1 [燃料工业产品];
学科分类号
0202 ; 020205 ; 1202 ; 120202 ;
摘要
Extreme values are usually given special attention. Using a decomposition-based vector autoregressive(VAR) model, this paper investigates the additional information of extreme values for forecasting the crude oil price. Empirical studies performed on the WTI spot crude oil price over year 1986-2013 are positive: decomposition-based VAR model produces significant both in-sample and out-of-sample forecast. Different evaluation tests are used and the results unanimously report the dominance of decomposition-based VAR over both efficient market model and ARIMA model. These findings are important as they hint that forecasts can be improved if high-low extreme information is properly used. An even more interesting finding is that the predictability of the crude oil price is asymmetric: crude oil price is more predictable in recession than in expansion. This finding is of great significance as it means there is information friction in the oil market especially when the oil price is in recession.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 50 条
  • [1] Forecasting the price of crude oil
    Ramesh Bollapragada
    Akash Mankude
    V. Udayabhanu
    DECISION, 2021, 48 : 207 - 231
  • [2] Forecasting the price of crude oil
    Bollapragada, Ramesh
    Mankude, Akash
    Udayabhanu, V
    DECISION, 2021, 48 (02) : 207 - 231
  • [3] Interval forecasting of crude oil price
    Xu, Shanying
    Chen, Xi
    Han, Ai
    INTERVAL / PROBABILISTIC UNCERTAINTY AND NON-CLASSICAL LOGICS, 2008, 46 : 353 - 363
  • [4] Forecasting crude oil price volatility
    Herrera, Ana Maria
    Hu, Liang
    Pastor, Daniel
    INTERNATIONAL JOURNAL OF FORECASTING, 2018, 34 (04) : 622 - 635
  • [5] Crude oil price forecasting with ANFIS
    Zimberg, B.
    INTERNATIONAL CONFERENCE ON INDUSTRIAL LOGISTICS (ICIL 2008): LOGISTICS IN A FLAT WORLD: STRATEGY, MANAGEMENT AND OPERATIONS, 2008, : 274 - 281
  • [6] Crude oil price forecasting based on internet concern using an extreme learning machine
    Wang, Jue
    Athanasopoulos, George
    Hyndman, Rob J.
    Wang, Shouyang
    INTERNATIONAL JOURNAL OF FORECASTING, 2018, 34 (04) : 665 - 677
  • [7] Influential factors in crude oil price forecasting
    Miao, Hong
    Ramchander, Sanjay
    Wang, Tianyang
    Yang, Dongxiao
    ENERGY ECONOMICS, 2017, 68 : 77 - 88
  • [8] Crude Oil Price Forecasting Using XGBoost
    Gumus, Mesut
    Kiran, Mustafa S.
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 1100 - 1103
  • [9] A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting
    Yu, Lean
    Dai, Wei
    Tang, Ling
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 47 : 110 - 121
  • [10] Crude Oil Spot Price Forecasting Based on Multiple Crude Oil Markets and Timeframes
    Deng, Shangkun
    Sakurai, Akito
    ENERGIES, 2014, 7 (05): : 2761 - 2779