Perceptual Optimization for Point-Based Point Cloud Rendering

被引:0
|
作者
YIN Yujie [1 ]
CHEN Zhang [1 ]
机构
[1] School of Electronics and Information, Northwestern Polytechnical University
关键词
D O I
10.12142/ZTECOM.202304006
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Point-based rendering is a common method widely used in point cloud rendering.It realizes rendering by turning the points into the base geometry.The critical step in point-based rendering is to set an appropriate rendering radius for the base geometry,usually calculated using the average Euclidean distance of the N nearest neighboring points to the rendered point.This method effectively reduces the appearance of empty spaces between points in rendering.However,it also causes the problem that the rendering radius of outlier points far away from the central region of the point cloud sequence could be large,which impacts the perceptual quality.To solve the above problem,we propose an algorithm for point-based point cloud rendering through outlier detection to optimize the perceptual quality of rendering.The algorithm determines whether the detected points are outliers using a combination of local and global geometric features.For the detected outliers,the minimum radius is used for rendering.We examine the performance of the proposed method in terms of both objective quality and perceptual quality.The experimental results show that the peak signal-to-noise ratio(PSNR) of the point cloud sequences is improved under all geometric quantization,and the PSNR improvement ratio is more evident in dense point clouds.Specifically,the PSNR of the point cloud sequences is improved by 3.6% on average compared with the original algorithm.The proposed method significantly improves the perceptual quality of the rendered point clouds and the results of ablation studies prove the feasibility and effectiveness of the proposed method.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
  • [1] Point-based rendering techniques
    Sainz, M
    Pajarola, R
    [J]. COMPUTERS & GRAPHICS-UK, 2004, 28 (06): : 869 - 879
  • [2] Point-Based Neural Rendering with Per-View Optimization
    Neff, T.
    Stadlbauer, P.
    Parger, M.
    Kurz, A.
    Mueller, J. H.
    Chaitanya, C. R. A.
    Kaplanyan, A.
    Steinberger, M.
    [J]. COMPUTER GRAPHICS FORUM, 2021, 40 (04) : 45 - 59
  • [3] Point-based rendering with discrete LOD
    Rong, GD
    Wang, R
    Meng, XX
    Yang, CL
    [J]. CAD/ GRAPHICS TECHNOLOGY AND ITS APPLICATIONS, PROCEEDINGS, 2003, : 369 - 370
  • [4] Subsurface scattering in point-based rendering
    Choi Soo-Mi
    [J]. CHINESE SCIENCE BULLETIN, 2010, 55 (23): : 2598 - 2598
  • [5] Subsurface scattering in point-based rendering
    不详
    [J]. PHOTONICS SPECTRA, 2011, 45 (02) : 61 - 61
  • [6] A new approach of point-based rendering
    Peng, QS
    Hua, W
    Yang, XH
    [J]. COMPUTER GRAPHICS INTERNATIONAL 2001, PROCEEDINGS, 2001, : 275 - 282
  • [7] Interactive point-based painterly rendering
    Kawata, H
    Gouaillard, A
    Kanai, T
    [J]. 2004 INTERNATIONAL CONFERENCE ON CYBERWORLDS, PROCEEDINGS, 2004, : 293 - 299
  • [8] Point-based rendering optimization with textured meshes for fast LiDAR visualization
    Kuder, Marko
    Sterk, Marjan
    Zalik, Borut
    [J]. COMPUTERS & GEOSCIENCES, 2013, 59 : 181 - 190
  • [9] Efficient method for point-based rendering on GPUs
    Yan, Lamei
    Yuan, Youwei
    [J]. TECHNOLOGIES FOR E-LEARNING AND DIGITAL ENTERTAINMENT, PROCEEDINGS, 2008, 5093 : 687 - +
  • [10] A point-based rendering approach for mobile devices
    He, Zhiying
    Liang, Xiaohui
    [J]. ICAT 2006: 16TH INTERNATIONAL CONFERENCE ON ARTIFICIAL REALITY AND TELEXISTENCE - WORSHOPS, PROCEEDINGS, 2006, : 26 - +