Data-driven fusion and fission solutions in the Hirota-Satsuma-Ito equation via the physics-informed neural networks method

被引:0
|
作者
Jianlong Sun [1 ]
Kaijie Xing [1 ]
Hongli An [1 ]
机构
[1] College of Sciences, Nanjing Agricultural University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O571.3 [放射性原子核衰变]; O571.43 [裂变]; TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0827 ; 082701 ; 0835 ; 1405 ;
摘要
Fusion and fission are two important phenomena that have been experimentally observed in many real physical models. In this paper, we investigate the two phenomena in the(2+1)-dimensional Hirota–Satsuma–Ito equation via the physics-informed neural networks(PINN)method. By choosing suitable physically constrained initial boundary conditions, the data-driven fusion and fission solutions are obtained for the first time. Dynamical behaviors and error analysis of these solutions are investigated via illustratively numerical figures, which show that good results are achieved. It is pointed out that the PINN method adopted here can be effectively used to construct the data-driven fusion and fission solutions for other nonlinear integrable equations. Based on the powerful predictive capability of the PINN method and wide applications of fusion and fission in many physical areas, it is hoped that the data-driven solutions obtained here will be helpful for experts to predict or explain related physical phenomena.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [1] Data-driven fusion and fission solutions in the Hirota-Satsuma-Ito equation via the physics-informed neural networks method
    Sun, Jianlong
    Xing, Kaijie
    An, Hongli
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (11)
  • [2] Data-driven solutions and parameter discovery of the Sasa-Satsuma equation via the physics-informed neural networks method
    Luo, Hao-Tian
    Wang, Lei
    Zhang, Ya-Bin
    Lu, Gui
    Su, Jing-Jing
    Zhao, Yin-Chuan
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 440
  • [3] Various solutions of the (2+1)-dimensional Hirota-Satsuma-Ito equation using the bilinear neural network method
    Zhu, Guangzheng
    Wang, Hailing
    Mou, Zhen-ao
    Lin, Yezhi
    CHINESE JOURNAL OF PHYSICS, 2023, 83 : 292 - 305
  • [4] Data-driven modeling of Landau damping by physics-informed neural networks
    Qin, Yilan
    Ma, Jiayu
    Jiang, Mingle
    Dong, Chuanfei
    Fu, Haiyang
    Wang, Liang
    Cheng, Wenjie
    Jin, Yaqiu
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [5] Data-driven physics-informed neural networks: A digital twin perspective
    Yang, Sunwoong
    Kim, Hojin
    Hong, Yoonpyo
    Yee, Kwanjung
    Maulik, Romit
    Kang, Namwoo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [6] Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities
    de la Mata, Felix Fernandez
    Gijon, Alfonso
    Molina-Solana, Miguel
    Gomez-Romero, Juan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 610
  • [7] Data-driven localized waves of a nonlinear partial differential equation via transformation and physics-informed neural network
    Li, Nan
    Wang, Ming
    Nonlinear Dynamics, 2025, 113 (03) : 2559 - 2568
  • [8] Data-driven building energy efficiency prediction using physics-informed neural networks
    Michalakopoulos, Vasilis
    Pelekis, Sotiris
    Kormpakis, Giorgos
    Karakolis, Vagelis
    Mouzakitis, Spiros
    Askounis, Dimitris
    2024 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY, SUSTECH, 2024, : 84 - 91
  • [9] Data-driven discovery of turbulent flow equations using physics-informed neural networks
    Yazdani, Shirindokht
    Tahani, Mojtaba
    PHYSICS OF FLUIDS, 2024, 36 (03)