Unsteady Conjugate Natural Convection in a Vertical Cylinder Containing a Horizontal Porous Layer: Darcy Model and Brinkman-Extended Darcy Model

被引:0
|
作者
Mikhail A. Sheremet
Tatyana A. Trifonova
机构
[1] Tomsk State University,Faculty of Mechanics and Mathematics
[2] Tomsk Polytechnic University,Institute of Power Engineering
来源
Transport in Porous Media | 2014年 / 101卷
关键词
Conjugate natural convection; Darcy model; Brinkman-extended Darcy model; Boussinesq approximation; Stream function—vorticity formulation;
D O I
暂无
中图分类号
学科分类号
摘要
Transient natural convection in a vertical cylinder partially filled with a porous media with heat-conducting solid walls of finite thickness in conditions of convective heat exchange with an environment has been studied numerically. The Darcy and Brinkman-extended Darcy models with Boussinesq approximation have been used to solve the flow and heat transfer in the porous region. The Oberbeck–Boussinesq equations have been used to describe the flow and heat transfer in the pure fluid region. The Beavers–Joseph empirical boundary condition is considered at the fluid–porous layer interface with the Darcy model. In the case of the Brinkman-extended Darcy model, the two regions are coupled by equating the velocity and stress components at the interface. The governing equations formulated in terms of the dimensionless stream function, vorticity, and temperature have been solved using the finite difference method. The main objective was to investigate the influence of the Darcy number 10-5≤Da≤10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-5}\le \hbox {Da}\le 10^{-3}$$\end{document}, porous layer height ratio 0≤d/L≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le d/L\le 1$$\end{document}, thermal conductivity ratio 1≤k1,3≤20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k_{1,3}\le 20$$\end{document}, and dimensionless time 0≤τ≤1000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \tau \le 1000$$\end{document} on the fluid flow and heat transfer on the basis of the Darcy and non-Darcy models. Comprehensive analysis of an effect of these key parameters on the Nusselt number at the bottom wall, average temperature in the cylindrical cavity, and maximum absolute value of the stream function has been conducted.
引用
收藏
页码:437 / 463
页数:26
相关论文
共 50 条