Prediction of problematic wine fermentations using artificial neural networks

被引:0
|
作者
R. César Román
O. Gonzalo Hernández
U. Alejandra Urtubia
机构
[1] Universidad de Valparaíso,Escuela de Ingeniería Industrial
[2] Universidad de Chile,Centro de Modelamiento Matemático
[3] Universidad Técnica Federico Santa María,Departamento de Ingeniería Química y Ambiental
[4] Centro Regional de Estudios de Alimentos Saludables,undefined
来源
关键词
Artificial neural networks; Pattern recognition; Fermentation; Wine;
D O I
暂无
中图分类号
学科分类号
摘要
Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.
引用
下载
收藏
页码:1057 / 1065
页数:8
相关论文
共 50 条
  • [1] Prediction of problematic wine fermentations using artificial neural networks
    Cesar Roman, R.
    Gonzalo Hernandez, O.
    Alejandra Urtubia, U.
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2011, 34 (09) : 1057 - 1065
  • [2] Selection of features and prediction of wine quality using artificial neural networks
    Athanasiadis, Ioannis
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2021, 14 (02) : 389 - 416
  • [3] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +
  • [4] Prediction of Abnormal Wine Fermentations Using Computational Intelligent Techniques
    Hernandez, Gonzalo
    Leon, Roberto
    Urtubia, Alejandra
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2015, 15 (01): : 1 - 7
  • [5] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212
  • [6] Stability Prediction of ΔΣ Modulators using Artificial Neural Networks
    Kaesser, Paul
    Kaltenstadler, Sebastian
    Conrad, Joschua
    Wagner, Johannes
    Ismail, Omar
    Ortmanns, Maurits
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [7] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [8] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [9] Prediction of groundwater drawdown using artificial neural networks
    Vahid Gholami
    Hossein Sahour
    Environmental Science and Pollution Research, 2022, 29 : 33544 - 33557
  • [10] Prediction of extrudate properties using artificial neural networks
    Shankar, T. J.
    Bandyopadhyay, S.
    FOOD AND BIOPRODUCTS PROCESSING, 2007, 85 (C1) : 29 - 33