Large Deviations for Gaussian Diffusions with Delay

被引:0
|
作者
Robert Azencott
Brett Geiger
William Ott
机构
[1] University of Houston,
来源
关键词
Gaussian process; Diffusion; Delay; Large deviations; Optimal transition path; Chemical Langevin equation; Linear noise approximation; Bistable genetic switch; 60F10; 60G15; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
Dynamical systems driven by nonlinear delay SDEs with small noise can exhibit important rare events on long timescales. When there is no delay, classical large deviations theory quantifies rare events such as escapes from metastable fixed points. Near such fixed points, one can approximate nonlinear delay SDEs by linear delay SDEs. Here, we develop a fully explicit large deviations framework for (necessarily Gaussian) processes Xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_t$$\end{document} driven by linear delay SDEs with small diffusion coefficients. Our approach enables fast numerical computation of the action functional controlling rare events for Xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_t$$\end{document} and of the most likely paths transiting from X0=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_0 = p$$\end{document} to XT=q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_T=q$$\end{document}. Via linear noise local approximations, we can then compute most likely routes of escape from metastable states for nonlinear delay SDEs. We apply our methodology to the detailed dynamics of a genetic regulatory circuit, namely the co-repressive toggle switch, which may be described by a nonlinear chemical Langevin SDE with delay.
引用
收藏
页码:254 / 285
页数:31
相关论文
共 50 条
  • [1] Large Deviations for Gaussian Diffusions with Delay
    Azencott, Robert
    Geiger, Brett
    Ott, William
    JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (02) : 254 - 285
  • [2] Large deviations for regime-switching diffusions with infinite delay
    Wang, Ya
    Wu, Fuke
    Zhu, Chao
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 176
  • [3] Quenched large deviations for diffusions in a random Gaussian shear flow drift
    Asselah, A
    Castell, F
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 103 (01) : 1 - 29
  • [4] Annealed large deviations for diffusions in a random Gaussian shear flow drift
    Castell, F
    Pradeilles, F
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (02) : 171 - 197
  • [5] Dynamical large deviations of linear diffusions
    du Buisson, Johan
    Touchette, Hugo
    PHYSICAL REVIEW E, 2023, 107 (05)
  • [6] Dynamical large deviations of reflected diffusions
    du Buisson, Johan
    Touchette, Hugo
    PHYSICAL REVIEW E, 2020, 102 (01)
  • [7] Large deviations of estimators in homogeneous Diffusions
    Bishwal, Jaya P. N.
    PARAMETER ESTIMATION IN STOCHASTIC DIFFERENTIAL EQUATION, 2008, 1923 : 49 - 60
  • [8] Large deviations of conditioned diffusions and applications
    Baldi, Paolo
    Caramellino, Lucia
    Rossi, Maurizia
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (03) : 1289 - 1308
  • [9] Large deviations for two scaled diffusions
    Liptser, R
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (01) : 71 - 104
  • [10] Large deviations for singularly interacting diffusions
    Hoeksema, Jasper
    Holding, Thomas
    Maurelli, Mario
    Tse, Oliver
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 492 - 548