Evaluation of kernel density estimation methods for daily precipitation resampling

被引:0
|
作者
Balaji Rajagopalan
Upmanu Lall
David G. Tarboton
机构
[1] Lamont-Doherty Earth Observatory of Columbia University,Dept. of Civil & Environmental Engineering, Utah Water Res. Lab.
[2] Utah State University,undefined
来源
关键词
Precipitation; Probability Density Function; Density Estimation; Daily Precipitation; Kernel Density;
D O I
暂无
中图分类号
学科分类号
摘要
Kernel density estimators are useful building blocks for empirical statistical modeling of precipitation and other hydroclimatic variables. Data driven estimates of the marginal probability density function of these variables (which may have discrete or continuous arguments) provide a useful basis for Monte Carlo resampling and are also useful for posing and testing hypotheses (e.g bimodality) as to the frequency distributions of the variable. In this paper, some issues related to the selection and design of univariate kernel density estimators are reviewed. Some strategies for bandwidth and kernel selection are discussed in an applied context and recommendations for parameter selection are offered. This paper complements the nonparametric wet/dry spell resampling methodology presented in Lall et al. (1996).
引用
收藏
页码:523 / 547
页数:24
相关论文
共 50 条
  • [1] Evaluation of kernel density estimation methods for daily precipitation resampling
    Rajagopalan, B
    Lall, U
    Tarboton, DG
    STOCHASTIC HYDROLOGY AND HYDRAULICS, 1997, 11 (06): : 523 - 547
  • [2] From Gaussian kernel density estimation to kernel methods
    Shitong Wang
    Zhaohong Deng
    Fu-lai Chung
    Wenjun Hu
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 119 - 137
  • [3] From Gaussian kernel density estimation to kernel methods
    Wang, Shitong
    Deng, Zhaohong
    Chung, Fu-lai
    Hu, Wenjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 119 - 137
  • [4] Evaluation of threshold selection methods for adaptive kernel density estimation in disease mapping
    Ruckthongsook, Warangkana
    Tiwari, Chetan
    Oppong, Joseph R.
    Natesan, Prathiba
    INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2018, 17
  • [5] Evaluation of threshold selection methods for adaptive kernel density estimation in disease mapping
    Warangkana Ruckthongsook
    Chetan Tiwari
    Joseph R. Oppong
    Prathiba Natesan
    International Journal of Health Geographics, 17
  • [6] Unimodal density estimation using kernel methods
    Hall, P
    Huang, LS
    STATISTICA SINICA, 2002, 12 (04) : 965 - 990
  • [7] Resampling of Data for Offshore Grid Design based on Kernel Density Estimation and Genetic Algorithm
    Tai, Vin Cent
    Uhlen, Kjetil
    12TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, (EERA DEEPWIND 2015), 2015, 80 : 365 - 375
  • [8] Kernel density estimation in acceleratorsImplementation and performance evaluation
    Unai Lopez-Novoa
    Alexander Mendiburu
    Jose Miguel-Alonso
    The Journal of Supercomputing, 2016, 72 : 545 - 566
  • [9] On boosting kernel density methods for multivariate data: Density estimation and classification
    Di Marzio M.
    Taylor C.C.
    Statistical Methods and Applications, 2005, 14 (2): : 163 - 178
  • [10] Kernel Density Estimation, Kernel Methods, and Fast Learning in Large Data Sets
    Wang, Shitong
    Wang, Jun
    Chung, Fu-lai
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (01) : 1 - 20