Support vector regression integrated with novel meta-heuristic algorithms for meteorological drought prediction

被引:0
|
作者
Anurag Malik
Yazid Tikhamarine
Doudja Souag-Gamane
Priya Rai
Saad Shauket Sammen
Ozgur Kisi
机构
[1] Regional Research Station,Punjab Agricultural University
[2] University of Sciences and Technology Houari Boumediene,Leghyd Laboratory, Department of Civil Engineering
[3] University Centre of Tamanrasset,Department of Science and Technology
[4] G.B. Pant University of Agriculture & Technology,Department of Soil and Water Conservation Engineering, College of Technology
[5] Diyala University,Department of Civil Engineering, College of Engineering
[6] Ilia State University,Department of Civil Engineering
[7] Duy Tan University,Institute of Research and Development
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Drought is a complex natural phenomenon, so, precise prediction of drought is an effective mitigation tool for measuring the negative consequences on agriculture, ecosystems, hydrology, and water resources. The purpose of this research was to explore the potential capability of support vector regression (SVR) integrated with two meta-heuristic algorithms i.e., Grey Wolf Optimizer (GWO), and Spotted Hyena Optimizer (SHO), for meteorological drought (MD) prediction by utilizing EDI (effective drought index). For this objective, the two-hybrid SVR–GWO, and SVR–SHO models were constructed at Kumaon and Garhwal regions of Uttarakhand State (India). The EDI was computed in both study regions by using monthly rainfall data series to calibrate and validate the advanced hybrid SVR models. The autocorrelation function (ACF) and partial-ACF (PACF) were utilized to determine the optimal inputs (antecedent EDI) for EDI prediction. The results produced by the hybrid SVR models were compared with the calculated (observed) values by employing the statistical indicators and through graphical inspection. A comparison of results demonstrates that the hybrid SVR–GWO model outperformed to the SVR–SHO models for all study stations located in Kumaon and Garhwal regions. Also, the results highlighted the better suitability, supremacy, and convergence behavior of meta-heuristic algorithms (i.e., GWO and SHO) for meteorological drought prediction in the study regions.
引用
收藏
页码:891 / 909
页数:18
相关论文
共 50 条