The orthogonal momentum amplituhedron and ABJM amplitudes

被引:0
|
作者
Yu-tin Huang
Ryota Kojima
Congkao Wen
Shun-Qing Zhang
机构
[1] National Taiwan University,Department of Physics and Center for Theoretical Physics
[2] Physics Division,Centre for Theoretical Physics, Department of Physics and Astronomy
[3] National Center for Theoretical Sciences,undefined
[4] Queen Mary University of London,undefined
关键词
Scattering Amplitudes; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the momentum space amplituhedron for tree-level scattering amplitudes of ABJM theory. We demonstrate that the scattering amplitude can be identified as the canonical form on the space given by the product of positive orthogonal Grassmannian and the moment curve. The co-dimension one boundaries of this space are simply the odd-particle planar Mandelstam variables, while the even-particle counterparts are “hidden” as higher co-dimension boundaries. Remarkably, this space can be equally defined through a series of “sign flip” requirements of the projected external data, identical to “half” of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory (sYM). Thus in a precise sense the geometry for ABJM lives on the boundary of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 sYM. We verify this relation through eight-points by showing that the BCFW triangulation of the amplitude tiles the amplituhedron. The canonical form is naturally derived using the Grassmannian formula for the amplitude in the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 formalism for ABJM theory.
引用
收藏
相关论文
共 50 条
  • [1] The orthogonal momentum amplituhedron and ABJM amplitudes
    Huang, Yu-tin
    Kojima, Ryota
    Wen, Congkao
    Zhang, Shun-Qing
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [2] On the geometry of the orthogonal momentum amplituhedron
    Tomasz Łukowski
    Robert Moerman
    Jonah Stalknecht
    Journal of High Energy Physics, 2022
  • [3] On the geometry of the orthogonal momentum amplituhedron
    Lukowski, Tomasz
    Moerman, Robert
    Stalknecht, Jonah
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)
  • [4] The ABJM Amplituhedron
    He, Song
    Huang, Yu-tin
    Kuo, Chia-Kai
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
  • [5] ABJM amplitudes and the positive orthogonal Grassmannian
    Huang, Yu-tin
    Wen, CongKao
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02):
  • [6] ABJM amplitudes and the positive orthogonal Grassmannian
    Yu-tin Huang
    CongKao Wen
    Journal of High Energy Physics, 2014
  • [7] The momentum amplituhedron of SYM and ABJM from twistor-string maps
    He, Song
    Chia-Kai Kuo
    Yao-Qi Zhang
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [8] Erratum to: The ABJM Amplituhedron
    Song He
    Yu-tin Huang
    Chia-Kai Kuo
    Journal of High Energy Physics, 2024 (4)
  • [9] The momentum amplituhedron of SYM and ABJM from twistor-string maps
    Song He
    Chia-Kai Kuo
    Yao-Qi Zhang
    Journal of High Energy Physics, 2022
  • [10] Positroid stratification of orthogonal Grassmannian and ABJM amplitudes
    Joonho Kim
    Sangmin Lee
    Journal of High Energy Physics, 2014