Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space

被引:0
|
作者
Jacobo Torán
Florian Wörz
机构
[1] James-Franck-Ring,Universität Ulm
来源
computational complexity | 2021年 / 30卷
关键词
Proof complexity; Resolution; Tree-like resolution; Pebble game; Reversible pebbling; Prover–Delayer game; Raz–McKenzie game; Clause space; Variable space; Primary 03F20; Secondary 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
We show a new connection between the clause space measure in tree-like resolution and the reversible pebble game on graphs. Using this connection, we provide several formula classes for which there is a logarithmic factor separation between the clause space complexity measure in tree-like and general resolution. We also provide upper bounds for tree-like resolution clause space in terms of general resolution clause and variable space. In particular, we show that for any formula F, its tree-like resolution clause space is upper bounded by space(π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi)$$\end{document}(log(time(π))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log({\rm time}(\pi))$$\end{document}, where π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document} is any general resolution refutation of F. This holds considering as space(π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi)$$\end{document} the clause space of the refutation as well as considering its variable space. For the concrete case of Tseitin formulas, we are able to improve this bound to the optimal bound space(π)logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi)\log n$$\end{document}, where n is the number of vertices of the corresponding graph
引用
收藏
相关论文
共 42 条
  • [1] Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space
    Toran, Jacobo
    Woerz, Florian
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [2] REVERSIBLE PEBBLE GAMES AND THE RELATION BETWEEN TREE-LIKE AND GENERAL RESOLUTION SPACE
    Toran, Jacobo
    Woerz, Florian
    COMPUTATIONAL COMPLEXITY, 2021, 30 (01)
  • [3] Resolution Over Linear Equations: Combinatorial Games for Tree-like Size and Space
    Gryaznov, Svyatoslav
    Ovcharov, Sergei
    Riazanov, Artur
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2024, 16 (03)
  • [4] Near Optimal Separation Of Tree-Like And General Resolution
    Eli Ben-Sasson*
    Russell Impagliazzo†
    Avi Wigderson‡
    Combinatorica, 2004, 24 : 585 - 603
  • [5] Near optimal separation of tree-like and general resolution
    Ben-Sasson, E
    Impagliazzo, R
    Wigderson, A
    COMBINATORICA, 2004, 24 (04) : 585 - 603
  • [6] TREE-LIKE TSIRELSON SPACE
    SCHECHTMAN, G
    PACIFIC JOURNAL OF MATHEMATICS, 1979, 83 (02) : 523 - 530
  • [7] A characterization of tree-like Resolution size
    Beyersdorff, Olaf
    Galesi, Nicola
    Lauria, Massimo
    INFORMATION PROCESSING LETTERS, 2013, 113 (18) : 666 - 671
  • [8] Cliques enumeration and tree-like resolution proofs
    Lauria, Massimo
    INFORMATION PROCESSING LETTERS, 2018, 135 : 62 - 67
  • [9] A lower bound for the pigeonhole principle in tree-like Resolution by asymmetric Prover-Delayer games
    Beyersdorff, Olaf
    Galesi, Nicola
    Lauria, Massimo
    INFORMATION PROCESSING LETTERS, 2010, 110 (23) : 1074 - 1077
  • [10] A game characterisation of tree-like Q-Resolution size
    Beyersdorff, Olaf
    Chew, Leroy
    Sreenivasaiah, Karteek
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2019, 104 : 82 - 101